Source code for pm4py.algo.filtering.pandas.prefixes.prefix_filter

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

import pandas as pd

from enum import Enum
from typing import Optional, Dict, Any

from pm4py.util import constants
from pm4py.util import exec_utils
from pm4py.util import xes_constants, pandas_utils


[docs] class Parameters(Enum): CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY INDEX_KEY = "index_key" INDEX_IN_TRACE_KEY = "index_in_trace_key" USE_EXTREMES_TIMESTAMP = "use_extremes_timestamp" TEMP_COLUMN = "temp_column" FIRST_OR_LAST = "first_or_last" STRICT = "strict"
[docs] def apply(df: pd.DataFrame, activity: str, parameters: Optional[Dict[Any, Any]] = None): """ Filter all the prefixes to a given activity (first or last occurrence of the activity in the case). Parameters ---------------- df Dataframe parameters Parameters of the algorithm: - Parameters.CASE_ID_KEY => the case identifier column. - Parameters.ACTIVITY_KEY => the activity column. - Parameters.INDEX_IN_TRACE_KEY => attribute that should act as container of the index of the event inside the case. - Parameters.TEMP_COLUMN => temporary column which is used for internal purposes. - Parameters.FIRST_OR_LAST => filter on the first or last occurrence of an activity in the dataframe. - Parameters.STRICT => applies the filter in a strict (<) or lean (<=) way (boolean). Returns ---------------- df Dataframe filtered keeping the prefixes to a given activity (first or last occurrence of the activity in the case). """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY) index_in_trace_key = exec_utils.get_param_value(Parameters.INDEX_IN_TRACE_KEY, parameters, constants.DEFAULT_INDEX_IN_TRACE_KEY) temp_column = exec_utils.get_param_value(Parameters.TEMP_COLUMN, parameters, "@@temp_column") first_or_last = exec_utils.get_param_value(Parameters.FIRST_OR_LAST, parameters, "first") strict = exec_utils.get_param_value(Parameters.STRICT, parameters, True) if index_in_trace_key not in df.columns: df = pandas_utils.insert_ev_in_tr_index(df, column_name=index_in_trace_key, case_id=case_id_key) position_activity = df[df[activity_key] == activity].groupby(case_id_key) if first_or_last == "first": position_activity = position_activity.first() elif first_or_last == "last": position_activity = position_activity.last() position_activity = position_activity.reset_index()[[case_id_key, index_in_trace_key]].to_dict("records") position_activity = {x[case_id_key]: x[index_in_trace_key] for x in position_activity} df[temp_column] = df[case_id_key].map(position_activity) if strict: df = df[df[index_in_trace_key] < df[temp_column]] else: df = df[df[index_in_trace_key] <= df[temp_column]] return df