Source code for pm4py.visualization.dotted_chart.visualizer

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import shutil
from enum import Enum
from typing import List, Any, Dict, Optional, Union

import pandas as pd

from pm4py.objects.conversion.log import converter as log_converter
from pm4py.objects.log.obj import EventLog
from pm4py.util import exec_utils, vis_utils
from pm4py.visualization.dotted_chart.variants import classic
from pm4py.util import constants, pandas_utils


[docs] class Variants(Enum): CLASSIC = classic
[docs] def apply(log_obj: Union[pd.DataFrame, EventLog], attributes: List[str], variant=Variants.CLASSIC, parameters: Optional[Dict[Any, Any]] = None) -> str: """ Creates the dotted chart with the log objects and the provided attributes Parameters --------------- log_obj Log object attributes List of attributes that should be included in the dotted chart parameters Variant-specific parameters Returns --------------- file_path Path to the dotted chart visualization """ if parameters is None: parameters = {} if pandas_utils.check_is_pandas_dataframe(log_obj): log_obj = log_obj[list(set(attributes))] parameters["deepcopy"] = False stream = log_converter.apply(log_obj, variant=log_converter.Variants.TO_EVENT_STREAM, parameters=parameters) stream = [tuple(y[a] for a in attributes) for y in stream] return exec_utils.get_variant(variant).apply(stream, attributes, parameters=parameters)
[docs] def view(figure: str): """ Views the dotted chart on the screen Parameters --------------- figure Path to the dotted chart """ if constants.DEFAULT_ENABLE_VISUALIZATIONS_VIEW: if constants.DEFAULT_GVIZ_VIEW == "matplotlib_view": import matplotlib.pyplot as plt import matplotlib.image as mpimg img = mpimg.imread(figure) plt.axis('off') plt.tight_layout(pad=0, w_pad=0, h_pad=0) plt.imshow(img) plt.show() return if vis_utils.check_visualization_inside_jupyter(): vis_utils.view_image_in_jupyter(figure) else: vis_utils.open_opsystem_image_viewer(figure)
[docs] def save(figure: str, output_file_path: str): """ Saves the dotted chart to a specified path Parameters ---------------- figure Current path to the dotted chart output_file_path Destination path """ shutil.copyfile(figure, output_file_path) return ""
[docs] def serialize(figure: str): """ Performs the serialization of the dotted chart visualization Parameters ----------------- figure Current path to the dotted chart """ with open(figure, "rb") as f: return f.read()
[docs] def matplotlib_view(figure: str): """ Views the dotted chart on the screen using Matplotlib Parameters --------------- figure Path to the dotted chart """ if constants.DEFAULT_ENABLE_VISUALIZATIONS_VIEW: import matplotlib.pyplot as plt import matplotlib.image as mpimg img = mpimg.imread(figure) plt.imshow(img) plt.show()