Source code for pm4py.visualization.dotted_chart.visualizer
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import shutil
from enum import Enum
from typing import List, Any, Dict, Optional, Union
import pandas as pd
from pm4py.objects.conversion.log import converter as log_converter
from pm4py.objects.log.obj import EventLog
from pm4py.util import exec_utils, vis_utils
from pm4py.visualization.dotted_chart.variants import classic
from pm4py.util import constants, pandas_utils
[docs]
class Variants(Enum):
CLASSIC = classic
[docs]
def apply(log_obj: Union[pd.DataFrame, EventLog], attributes: List[str], variant=Variants.CLASSIC,
parameters: Optional[Dict[Any, Any]] = None) -> str:
"""
Creates the dotted chart with the log objects and the provided attributes
Parameters
---------------
log_obj
Log object
attributes
List of attributes that should be included in the dotted chart
parameters
Variant-specific parameters
Returns
---------------
file_path
Path to the dotted chart visualization
"""
if parameters is None:
parameters = {}
if pandas_utils.check_is_pandas_dataframe(log_obj):
log_obj = log_obj[list(set(attributes))]
parameters["deepcopy"] = False
stream = log_converter.apply(log_obj, variant=log_converter.Variants.TO_EVENT_STREAM, parameters=parameters)
stream = [tuple(y[a] for a in attributes) for y in stream]
return exec_utils.get_variant(variant).apply(stream, attributes, parameters=parameters)
[docs]
def view(figure: str):
"""
Views the dotted chart on the screen
Parameters
---------------
figure
Path to the dotted chart
"""
if constants.DEFAULT_ENABLE_VISUALIZATIONS_VIEW:
if constants.DEFAULT_GVIZ_VIEW == "matplotlib_view":
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread(figure)
plt.axis('off')
plt.tight_layout(pad=0, w_pad=0, h_pad=0)
plt.imshow(img)
plt.show()
return
if vis_utils.check_visualization_inside_jupyter():
vis_utils.view_image_in_jupyter(figure)
else:
vis_utils.open_opsystem_image_viewer(figure)
[docs]
def save(figure: str, output_file_path: str):
"""
Saves the dotted chart to a specified path
Parameters
----------------
figure
Current path to the dotted chart
output_file_path
Destination path
"""
shutil.copyfile(figure, output_file_path)
return ""
[docs]
def serialize(figure: str):
"""
Performs the serialization of the dotted chart visualization
Parameters
-----------------
figure
Current path to the dotted chart
"""
with open(figure, "rb") as f:
return f.read()
[docs]
def matplotlib_view(figure: str):
"""
Views the dotted chart on the screen using Matplotlib
Parameters
---------------
figure
Path to the dotted chart
"""
if constants.DEFAULT_ENABLE_VISUALIZATIONS_VIEW:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread(figure)
plt.imshow(img)
plt.show()