pm4py.analysis.insert_case_arrival_finish_rate#

pm4py.analysis.insert_case_arrival_finish_rate(log: EventLog | DataFrame, arrival_rate_column='@@arrival_rate', finish_rate_column='@@finish_rate', activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name', start_timestamp_key: str = 'time:timestamp') DataFrame[source]#

Inserts the arrival/finish rates of the case in the dataframe. The arrival rate is computed as the difference between the start time of the case and the start time of the previous case to start. The finish rate is computed as the difference between the end time of the case and the end time of the next case to end.

Parameters:
  • log – event log / Pandas dataframe

  • arrival_rate_column (str) – column to be used for the arrival rate

  • finish_rate_column (str) – column to be used for the finish rate

  • activity_key (str) – attribute to be used for the activity

  • timestamp_key (str) – attribute to be used for the timestamp

  • case_id_key (str) – attribute to be used as case identifier

  • start_timestamp_key (str) – attribute to be used as start timestamp

Return type:

pd.DataFrame

import pm4py

dataframe = pm4py.insert_case_arrival_finish_rate(dataframe, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name', start_timestamp_key='time:timestamp')