pm4py.conformance.conformance_declare#
- pm4py.conformance.conformance_declare(log: EventLog | DataFrame, declare_model: Dict[str, Dict[Any, Dict[str, int]]], activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name', return_diagnostics_dataframe: bool = False) List[Dict[str, Any]] [source]#
Applies conformance checking against a DECLARE model.
Reference paper: F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, “User-guided discovery of declarative process models,” 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 192-199, doi: 10.1109/CIDM.2011.5949297.
- Parameters:
log – event log
declare_model – DECLARE model
activity_key (
str
) – attribute to be used for the activitytimestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifierreturn_diagnostics_dataframe (
bool
) – if possible, returns a dataframe with the diagnostics (instead of the usual output)
- Return type:
List[Dict[str, Any]]
import pm4py log = pm4py.read_xes("C:/receipt.xes") declare_model = pm4py.discover_declare(log) conf_result = pm4py.conformance_declare(log, declare_model)