pm4py.conformance#

The pm4py.conformance module contains the conformance checking algorithms implemented in pm4py

Functions

check_is_fitting(*args[, activity_key])

Checks if a trace object is fit against a process model

conformance_declare(log, declare_model[, ...])

Applies conformance checking against a DECLARE model.

conformance_diagnostics_alignments(log, *args)

Apply the alignments algorithm between a log and a process model.

conformance_diagnostics_footprints(*args)

Provide conformance checking diagnostics using footprints

conformance_diagnostics_token_based_replay(...)

Apply token-based replay for conformance checking analysis.

conformance_log_skeleton(log, log_skeleton)

Performs conformance checking using the log skeleton

conformance_temporal_profile(log, ...[, ...])

Performs conformance checking on the provided log with the provided temporal profile.

fitness_alignments(log, petri_net, ...[, ...])

Calculates the fitness using alignments The output dictionary contains the following keys: - average_trace_fitness (between 0.0 and 1.0; computed as average of the trace fitnesses) - log_fitness (between 0.0 and 1.0) - percentage_of_fitting_traces (the percentage of fit traces (from 0.0 to 100.0)

fitness_footprints(*args)

Calculates fitness using footprints.

fitness_token_based_replay(log, petri_net, ...)

Calculates the fitness using token-based replay.

generalization_tbr(log, petri_net, ...[, ...])

Computes the generalization of the model (against the event log).

precision_alignments(log, petri_net, ...[, ...])

Calculates the precision of the model w.r.t.

precision_footprints(*args)

Calculates precision using footprints

precision_token_based_replay(log, petri_net, ...)

Calculates the precision precision using token-based replay

replay_prefix_tbr(prefix, net, im, fm[, ...])

Replays a prefix (list of activities) on a given accepting Petri net, using Token-Based Replay.