pm4py.convert.convert_log_to_networkx#
- pm4py.convert.convert_log_to_networkx(log: EventLog | EventStream | DataFrame, include_df: bool = True, case_id_key: str = 'concept:name', other_case_attributes_as_nodes: Collection[str] | None = None, event_attributes_as_nodes: Collection[str] | None = None) DiGraph [source]#
Converts an event log object to a NetworkX DiGraph object. The nodes of the graph are the events, the cases (and possibly the attributes of the log). The edges are: - Connecting each event to the corresponding case (BELONGS_TO type) - Connecting every event to the directly-following one (DF type, if enabled) - Connecting every case/event to the given attribute values (ATTRIBUTE_EDGE type)
- Parameters:
log – log object (EventLog, EventStream, Pandas dataframe)
include_df (
bool
) – include the directly-follows graph relation in the graph (bool)case_id_attribute – specify which attribute at the case level should be considered the case ID (str)
other_case_attributes_as_nodes – specify which attributes at the case level should be inserted in the graph as nodes (other than the caseID) (list, default empty)
event_attributes_as_nodes – specify which attributes at the event level should be inserted in the graph as nodes (list, default empty)
- Return type:
nx.DiGraph