pm4py.discovery.derive_minimum_self_distance#
- pm4py.discovery.derive_minimum_self_distance(log: DataFrame | EventLog | EventStream, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') Dict[str, int] [source]#
Computes the minimum self-distance for each activity observed in an event log.
The self-distance of activity a in <a> is infinity, in <a, a> is 0, in <a, b, a> is 1, etc. The activity key ‘concept:name’ is used.
- Parameters:
log – Event log or Pandas DataFrame.
activity_key (
str
) – Attribute to be used for the activity (default: “concept:name”).timestamp_key (
str
) – Attribute to be used for the timestamp (default: “time:timestamp”).case_id_key (
str
) – Attribute to be used as case identifier (default: “case:concept:name”).
- Returns:
A dictionary mapping each activity to its minimum self-distance.
- Return type:
Dict[str, int]
import pm4py msd = pm4py.derive_minimum_self_distance( dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp' )