pm4py.discovery.discover_declare#
- pm4py.discovery.discover_declare(log: EventLog | DataFrame, allowed_templates: Set[str] | None = None, considered_activities: Set[str] | None = None, min_support_ratio: float | None = None, min_confidence_ratio: float | None = None, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') Dict[str, Dict[Any, Dict[str, int]]] [source]#
Discovers a DECLARE model from an event log.
Reference paper: F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, “User-guided discovery of declarative process models,” 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 192-199, doi: 10.1109/CIDM.2011.5949297.
- Parameters:
log – event log / Pandas dataframe
allowed_templates – (optional) collection of templates to consider for the discovery
considered_activities – (optional) collection of activities to consider for the discovery
min_support_ratio – (optional, decided automatically otherwise) minimum percentage of cases (over the entire set of cases of the log) for which the discovered rules apply
min_confidence_ratio – (optional, decided automatically otherwise) minimum percentage of cases (over the rule’s support) for which the discovered rules are valid
activity_key (
str
) – attribute to be used for the activitytimestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifier
- Return type:
Dict[str, Any]
import pm4py declare_model = pm4py.discover_declare(log)