pm4py.discovery.discover_eventually_follows_graph#
- pm4py.discovery.discover_eventually_follows_graph(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') Dict[Tuple[str, str], int] [source]#
Generates the Eventually-Follows Graph from a log.
The Eventually-Follows Graph is a dictionary that maps each pair of activities to the number of times one activity eventually follows the other in the log.
- Parameters:
log – Event log or Pandas DataFrame.
activity_key (
str
) – Attribute to be used for the activity (default: “concept:name”).timestamp_key (
str
) – Attribute to be used for the timestamp (default: “time:timestamp”).case_id_key (
str
) – Attribute to be used as case identifier (default: “case:concept:name”).
- Returns:
A dictionary mapping each pair of activities to the count of their eventually-follows relationship.
- Return type:
Dict[Tuple[str, str], int]
import pm4py efg = pm4py.discover_eventually_follows_graph( dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp' )