pm4py.discovery.discover_heuristics_net#
- pm4py.discovery.discover_heuristics_net(log: EventLog | DataFrame, dependency_threshold: float = 0.5, and_threshold: float = 0.65, loop_two_threshold: float = 0.5, min_act_count: int = 1, min_dfg_occurrences: int = 1, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name', decoration: str = 'frequency') HeuristicsNet [source]#
Discovers a Heuristics Net.
Heuristics Miner operates on the Directly-Follows Graph, handling noise and identifying common constructs such as dependencies between activities and parallelism. The output is a Heuristics Net, which can then be converted into a Petri net.
- Parameters:
log – Event log or Pandas DataFrame.
dependency_threshold (
float
) – Dependency threshold (default: 0.5).and_threshold (
float
) – AND threshold for parallelism (default: 0.65).loop_two_threshold (
float
) – Loop two threshold (default: 0.5).min_act_count (
int
) – Minimum number of occurrences per activity to be included in the discovery (default: 1).min_dfg_occurrences (
int
) – Minimum number of occurrences per arc in the DFG to be included in the discovery (default: 1).activity_key (
str
) – Attribute to be used for the activity (default: “concept:name”).timestamp_key (
str
) – Attribute to be used for the timestamp (default: “time:timestamp”).case_id_key (
str
) – Attribute to be used as case identifier (default: “case:concept:name”).decoration (
str
) – The decoration to be used (“frequency” or “performance”) (default: “frequency”).
- Returns:
A HeuristicsNet object.
- Return type:
HeuristicsNet
import pm4py heu_net = pm4py.discover_heuristics_net( dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp' )