pm4py.discovery.discover_petri_net_ilp#
- pm4py.discovery.discover_petri_net_ilp(log: EventLog | DataFrame, alpha: float = 1.0, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') Tuple[PetriNet, Marking, Marking] [source]#
Discovers a Petri net using the ILP Miner.
- Parameters:
log – event log / Pandas dataframe
alpha (
float
) – noise threshold for the sequence encoding graph (1.0=no filtering, 0.0=greatest filtering)activity_key (
str
) – attribute to be used for the activitytimestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifier
- Return type:
Tuple[PetriNet, Marking, Marking]
import pm4py net, im, fm = pm4py.discover_petri_net_ilp(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')