pm4py.discovery.discover_powl#
- pm4py.discovery.discover_powl(log: EventLog | DataFrame, variant=POWLDiscoveryVariant.MAXIMAL, filtering_weight_factor: float = 0.0, order_graph_filtering_threshold: float = None, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') POWL [source]#
Discovers a POWL model from an event log.
Reference paper: Kourani, Humam, and Sebastiaan J. van Zelst. “POWL: partially ordered workflow language.” International Conference on Business Process Management. Cham: Springer Nature Switzerland, 2023.
- Parameters:
log – event log / Pandas dataframe
variant – variant of the algorithm
filtering_weight_factor (
float
) – accepts values 0 <= x < 1order_graph_filtering_threshold (
float
) – accepts values 0.5 < x <= 1activity_key (
str
) – attribute to be used for the activitytimestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifier
- Return type:
POWL
import pm4py log = pm4py.read_xes('tests/input_data/receipt.xes') powl_model = pm4py.discover_powl(log, activity_key='concept:name') print(powl_model)