pm4py.filtering.filter_case_performance#

pm4py.filtering.filter_case_performance(log: EventLog | DataFrame, min_performance: float, max_performance: float, timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame[source]#

Filters the event log, keeping the cases having a duration (the timestamp of the last event minus the timestamp of the first event) included between min_performance and max_performance

Parameters:
  • log – event log / Pandas dataframe

  • min_performance (float) – minimum allowed case duration

  • max_performance (float) – maximum allowed case duration

  • timestamp_key (str) – attribute to be used for the timestamp

  • case_id_key (str) – attribute to be used as case identifier

Return type:

Union[EventLog, pd.DataFrame]

import pm4py

filtered_dataframe = pm4py.filter_case_performance(dataframe, 3600.0, 86400.0, timestamp_key='time:timestamp', case_id_key='case:concept:name')