pm4py.filtering.filter_eventually_follows_relation#
- pm4py.filtering.filter_eventually_follows_relation(log: EventLog | DataFrame, relations: List[str], retain: bool = True, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame [source]#
Retains traces that contain any of the specified ‘eventually follows’ relations. For example, if relations == [(‘a’,’b’),(‘a’,’c’)] and log [<a,b,c>,<a,c,b>,<a,d,b>], the resulting log will contain traces describing [<a,b,c>,<a,c,b>,<a,d,b>].
- Parameters:
log – Event log or Pandas DataFrame.
relations – List of activity name pairs, representing allowed or forbidden paths.
retain (
bool
) – Boolean indicating whether the paths should be kept (if True) or removed (if False).activity_key (
str
) – Attribute to be used for the activity.timestamp_key (
str
) – Attribute to be used for the timestamp.case_id_key (
str
) – Attribute to be used as case identifier.
- Returns:
Filtered event log or Pandas DataFrame.
import pm4py filtered_dataframe = pm4py.filter_eventually_follows_relation( dataframe, [('A', 'B'), ('A', 'C')], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp' )