pm4py.filtering.filter_log_relative_occurrence_event_attribute#
- pm4py.filtering.filter_log_relative_occurrence_event_attribute(log: EventLog | DataFrame, min_relative_stake: float, attribute_key: str = 'concept:name', level='cases', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame [source]#
Filters the event log keeping only the events having an attribute value which occurs: - in at least the specified (min_relative_stake) percentage of events, when level=”events” - in at least the specified (min_relative_stake) percentage of cases, when level=”cases”
- Parameters:
log – event log / Pandas dataframe
min_relative_stake (
float
) – minimum percentage of cases (expressed as a number between 0 and 1) in which the attribute should occur.attribute_key (
str
) – the attribute to filterlevel (
str
) – the level of the filter (if level=”events”, then events / if level=”cases”, then cases)timestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifier
- Return type:
Union[EventLog, pd.DataFrame]
import pm4py filtered_dataframe = pm4py.filter_log_relative_occurrence_event_attribute(dataframe, 0.5, level='cases', case_id_key='case:concept:name', timestamp_key='time:timestamp')