pm4py.filtering.filter_paths_performance#
- pm4py.filtering.filter_paths_performance(log: EventLog | DataFrame, path: Tuple[str, str], min_performance: float, max_performance: float, keep: bool = True, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame [source]#
Filters the event log based on the performance of specified paths.
If keep=True, retains cases having the specified path (tuple of 2 activities) with a duration between min_performance and max_performance.
If keep=False, discards cases having the specified path with a duration between min_performance and max_performance.
- Parameters:
log – Event log or Pandas DataFrame.
path – Tuple of two activities (source_activity, target_activity).
min_performance (
float
) – Minimum allowed performance of the path.max_performance (
float
) – Maximum allowed performance of the path.keep (
bool
) – Boolean indicating whether to keep (if True) or discard (if False) the cases with the specified performance.activity_key (
str
) – Attribute to be used for the activity.timestamp_key (
str
) – Attribute to be used for the timestamp.case_id_key (
str
) – Attribute to be used as case identifier.
- Returns:
Filtered event log or Pandas DataFrame.
import pm4py filtered_dataframe = pm4py.filter_paths_performance( dataframe, ('A', 'D'), 3600.0, 86400.0, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name' )