pm4py.filtering.filter_start_activities#
- pm4py.filtering.filter_start_activities(log: EventLog | DataFrame, activities: Set[str] | List[str], retain: bool = True, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame [source]#
Filters cases that have a start activity in the provided list.
- Parameters:
log – Event log or Pandas DataFrame.
activities – Collection of start activities.
retain (
bool
) – If True, retains the traces containing the given start activities; if False, drops the traces.activity_key (
str
) – Attribute to be used for the activity.timestamp_key (
str
) – Attribute to be used for the timestamp.case_id_key (
str
) – Attribute to be used as case identifier.
- Returns:
Filtered event log or Pandas DataFrame.
import pm4py filtered_dataframe = pm4py.filter_start_activities( dataframe, ['Act. A'], activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp' )