pm4py.filtering.filter_time_range#
- pm4py.filtering.filter_time_range(log: EventLog | DataFrame, dt1: str, dt2: str, mode='events', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame [source]#
Filter a log on a time interval
- Parameters:
log – event log / Pandas dataframe
dt1 (
str
) – left extreme of the intervaldt2 (
str
) – right extreme of the intervalmode (
str
) – modality of filtering (events, traces_contained, traces_intersecting). events: any event that fits the time frame is retained; traces_contained: any trace completely contained in the timeframe is retained; traces_intersecting: any trace intersecting with the time-frame is retained.timestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifier
- Return type:
Union[EventLog, pd.DataFrame]
import pm4py filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_contained', case_id_key='case:concept:name', timestamp_key='time:timestamp') filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_intersecting', case_id_key='case:concept:name', timestamp_key='time:timestamp') filtered_dataframe1 = pm4py.filter_time_range(dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='events', case_id_key='case:concept:name', timestamp_key='time:timestamp')