pm4py.filtering.filter_time_range#
- pm4py.filtering.filter_time_range(log: EventLog | DataFrame, dt1: str, dt2: str, mode: str = 'events', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') EventLog | DataFrame [source]#
Filters a log based on a time interval.
- Parameters:
log – Event log or Pandas DataFrame.
dt1 (
str
) – Left extreme of the interval.dt2 (
str
) – Right extreme of the interval.mode (
str
) – Modality of filtering (‘events’, ‘traces_contained’, ‘traces_intersecting’). - ‘events’: Any event that fits the time frame is retained. - ‘traces_contained’: Any trace completely contained in the timeframe is retained. - ‘traces_intersecting’: Any trace intersecting with the timeframe is retained.timestamp_key (
str
) – Attribute to be used for the timestamp.case_id_key (
str
) – Attribute to be used as case identifier.
- Returns:
Filtered event log or Pandas DataFrame.
import pm4py filtered_dataframe1 = pm4py.filter_time_range( dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_contained', case_id_key='case:concept:name', timestamp_key='time:timestamp' ) filtered_dataframe2 = pm4py.filter_time_range( dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='traces_intersecting', case_id_key='case:concept:name', timestamp_key='time:timestamp' ) filtered_dataframe3 = pm4py.filter_time_range( dataframe, '2010-01-01 00:00:00', '2011-01-01 00:00:00', mode='events', case_id_key='case:concept:name', timestamp_key='time:timestamp' )