pm4py.llm.abstract_variants#
- pm4py.llm.abstract_variants(log_obj: DataFrame | EventLog | EventStream, max_len: int = 10000, include_performance: bool = True, relative_frequency: bool = False, response_header: bool = True, primary_performance_aggregation: str = 'mean', secondary_performance_aggregation: str | None = None, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') str [source]#
Obtains the variants abstraction of a traditional event log
- Parameters:
log_obj – log object
max_len (
int
) – maximum length of the (string) abstractioninclude_performance (
bool
) – (boolean) includes the performance of the variants in the abstractionrelative_frequency (
bool
) – (boolean) uses the relative instead of the absolute frequency of the variantsresponse_header (
bool
) – includes a short header before the variants, pointing to the description of the abstractionprimary_performance_aggregation (
str
) – primary aggregation to be used for the arc’s performance (default: mean, other options: median, min, max, sum, stdev)secondary_performance_aggregation – (optional) secondary aggregation to be used for the arc’s performance (default None, other options: mean, median, min, max, sum, stdev)
activity_key (
str
) – the column to be used as activitytimestamp_key (
str
) – the column to be used as timestampcase_id_key (
str
) – the column to be used as case identifier
- Return type:
str
import pm4py log = pm4py.read_xes("tests/input_data/roadtraffic100traces.xes") print(pm4py.llm.abstract_variants(log))