pm4py.ml.extract_outcome_enriched_dataframe#

pm4py.ml.extract_outcome_enriched_dataframe(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name', start_timestamp_key: str = 'time:timestamp') DataFrame[source]#

Inserts additional columns in the dataframe which are computed on the overall case, so they model the outcome of the case.

Parameters:
  • log – event log / Pandas dataframe

  • activity_key (str) – attribute to be used for the activity

  • timestamp_key (str) – attribute to be used for the timestamp

  • case_id_key (str) – attribute to be used as case identifier

  • start_timestamp_key (str) – attribute to be used as start timestamp

Return type:

pd.DataFrame

import pm4py

enriched_df = pm4py.extract_outcome_enriched_dataframe(log, activity_key='concept:name', timestamp_key='time:timestamp', case_id_key='case:concept:name', start_timestamp_key='time:timestamp')