pm4py.utils.project_on_event_attribute#
- pm4py.utils.project_on_event_attribute(log: EventLog | DataFrame, attribute_key='concept:name', case_id_key=None) List[List[str]] [source]#
Projects the event log onto a specified event attribute. The result is a list containing a list for each case, where each case is represented as a list of values for the specified attribute.
Example:
`python pm4py.project_on_event_attribute(log, "concept:name") `
Output:
[‘register request’, ‘examine casually’, ‘check ticket’, ‘decide’, ‘reinitiate request’, ‘examine thoroughly’, ‘check ticket’, ‘decide’, ‘pay compensation’], [‘register request’, ‘check ticket’, ‘examine casually’, ‘decide’, ‘pay compensation’], [‘register request’, ‘examine thoroughly’, ‘check ticket’, ‘decide’, ‘reject request’], [‘register request’, ‘examine casually’, ‘check ticket’, ‘decide’, ‘pay compensation’], [‘register request’, ‘examine casually’, ‘check ticket’, ‘decide’, ‘reinitiate request’, ‘check ticket’, ‘examine casually’, ‘decide’, ‘reinitiate request’, ‘examine casually’, ‘check ticket’, ‘decide’, ‘reject request’], [‘register request’, ‘check ticket’, ‘examine thoroughly’, ‘decide’, ‘reject request’]
]#
- type attribute_key:
str
- param log:
Event log or Pandas DataFrame.
- param attribute_key:
The attribute to be used for projection.
- param case_id_key:
(Optional) The attribute to be used as case identifier.
- return:
A list of lists containing the projected attribute values for each case.
- rtype:
List[List[str]]
import pm4py list_list_activities = pm4py.project_on_event_attribute(dataframe, 'concept:name')