pm4py.algo.analysis.woflan.graphs package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Subpackages#
Submodules#
pm4py.algo.analysis.woflan.graphs.utility module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- pm4py.algo.analysis.woflan.graphs.utility.compute_incidence_matrix(net)[source]#
Given a Petri Net, the incidence matrix is computed. An incidence matrix has n rows (places) and m columns (transitions). :param net: Petri Net object :return: Incidence matrix
- pm4py.algo.analysis.woflan.graphs.utility.split_incidence_matrix(matrix, net)[source]#
We split the incidence matrix columnwise to get the firing information for each transition :param matrix: incidence matrix :param net: Petri Net :return: Dictionary, whereby the key is an np array that contains the firing information and the value is the name of the transition
- pm4py.algo.analysis.woflan.graphs.utility.convert_marking(net, marking, original_net=None)[source]#
Takes an marking as input and converts it into an Numpy Array :param net: PM4Py Petri Net object :param marking: Marking that should be converted :param original_net: PM4Py Petri Net object without short-circuited transition :return: Numpy array representation
- pm4py.algo.analysis.woflan.graphs.utility.check_for_dead_tasks(net, graph)[source]#
We compute a list of dead tasks. A dead task is a task which does not appear in the Minimal Coverability Graph :param net: Petri Net representation of PM4Py :param graph: Minimal coverability graph. NetworkX MultiDiGraph object. :return: list of dead tasks
- pm4py.algo.analysis.woflan.graphs.utility.check_for_improper_conditions(mcg)[source]#
An improper condition is a state in the minimum-coverability graph with an possible infinite amount of tokens :param mcg: networkx object (minimal coverability graph) :return: True, if there are no improper conditions; false otherwise