pm4py.algo.conformance.log_skeleton package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Subpackages#
Submodules#
pm4py.algo.conformance.log_skeleton.algorithm module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.algo.conformance.log_skeleton.algorithm.Variants(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- CLASSIC = <module 'pm4py.algo.conformance.log_skeleton.variants.classic' from 'C:\\Users\\berti\\pm4py-core\\pm4py\\algo\\conformance\\log_skeleton\\variants\\classic.py'>#
- pm4py.algo.conformance.log_skeleton.algorithm.apply(obj: EventLog | Trace | DataFrame, model: Dict[str, Any], variant=Variants.CLASSIC, parameters: Dict[Any, Any] | None = None) List[Set[Any]] [source]#
Apply log-skeleton based conformance checking given an event log/trace and a log-skeleton model
Parameters#
- obj
Object (event log/trace)
- model
Log-skeleton model
- variant
Variant of the algorithm, possible values: Variants.CLASSIC
- parameters
Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.CONSIDERED_CONSTRAINTS, among: equivalence, always_after, always_before, never_together, directly_follows, activ_freq
Returns#
- aligned_traces
Conformance checking results for each trace: - Outputs.IS_FIT => boolean that tells if the trace is perfectly fit according to the model - Outputs.DEV_FITNESS => deviation based fitness (between 0 and 1; the more the trace is near to 1 the more fit is) - Outputs.DEVIATIONS => list of deviations in the model
- pm4py.algo.conformance.log_skeleton.algorithm.apply_from_variants_list(var_list: List[List[str]], model: Dict[str, Any], variant=Variants.CLASSIC, parameters: Dict[Any, Any] | None = None) List[Set[Any]] [source]#
Performs conformance checking using the log skeleton, applying it from a list of variants
Parameters#
- var_list
List of variants
- model
Log skeleton model
- variant
Variant of the algorithm, possible values: Variants.CLASSIC
- parameters
Parameters
Returns#
- conformance_dictio
Dictionary containing, for each variant, the result of log skeleton checking
- pm4py.algo.conformance.log_skeleton.algorithm.get_diagnostics_dataframe(log: EventLog, conf_result: List[Set[Any]], variant=Variants.CLASSIC, parameters: Dict[Any, Any] | None = None) DataFrame [source]#
Gets the diagnostics dataframe from a log and the results of log skeleton-based conformance checking
Parameters#
- log
Event log
- conf_result
Results of conformance checking
Returns#
- diagn_dataframe
Diagnostics dataframe