pm4py.algo.discovery.heuristics package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Subpackages#
- pm4py.algo.discovery.heuristics.variants package
- Submodules
- pm4py.algo.discovery.heuristics.variants.classic module
Parameters
Parameters.ACTIVITY_KEY
Parameters.START_TIMESTAMP_KEY
Parameters.TIMESTAMP_KEY
Parameters.CASE_ID_KEY
Parameters.DEPENDENCY_THRESH
Parameters.AND_MEASURE_THRESH
Parameters.MIN_ACT_COUNT
Parameters.MIN_DFG_OCCURRENCES
Parameters.DFG_PRE_CLEANING_NOISE_THRESH
Parameters.LOOP_LENGTH_TWO_THRESH
Parameters.HEU_NET_DECORATION
apply()
apply_pandas()
apply_dfg()
apply_heu()
apply_heu_pandas()
apply_heu_dfg()
calculate()
- pm4py.algo.discovery.heuristics.variants.plusplus module
Submodules#
pm4py.algo.discovery.heuristics.algorithm module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.algo.discovery.heuristics.algorithm.Variants(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- CLASSIC = <module 'pm4py.algo.discovery.heuristics.variants.classic' from 'C:\\Users\\berti\\pm4py-core\\pm4py\\algo\\discovery\\heuristics\\variants\\classic.py'>#
- PLUSPLUS = <module 'pm4py.algo.discovery.heuristics.variants.plusplus' from 'C:\\Users\\berti\\pm4py-core\\pm4py\\algo\\discovery\\heuristics\\variants\\plusplus.py'>#
- pm4py.algo.discovery.heuristics.algorithm.apply(log: EventLog | EventStream | DataFrame, parameters: Dict[Any, Any] | None = None, variant=Variants.CLASSIC) Tuple[PetriNet, Marking, Marking] [source]#
Discovers a Petri net using Heuristics Miner
Parameters#
- log
Event log
- parameters
Possible parameters of the algorithm, including:
Parameters.ACTIVITY_KEY
Parameters.TIMESTAMP_KEY
Parameters.CASE_ID_KEY
Parameters.DEPENDENCY_THRESH
Parameters.AND_MEASURE_THRESH
Parameters.MIN_ACT_COUNT
Parameters.MIN_DFG_OCCURRENCES
Parameters.DFG_PRE_CLEANING_NOISE_THRESH
Parameters.LOOP_LENGTH_TWO_THRESH
- variant
- Variant of the algorithm:
Variants.CLASSIC
Variants.PLUSPLUS
Returns#
- net
Petri net
- im
Initial marking
- fm
Final marking
- pm4py.algo.discovery.heuristics.algorithm.apply_dfg(dfg: Dict[Tuple[str, str], int], activities=None, activities_occurrences=None, start_activities=None, end_activities=None, parameters=None, variant=Variants.CLASSIC) Tuple[PetriNet, Marking, Marking] [source]#
Discovers a Petri net using Heuristics Miner
Parameters#
- dfg
Directly-Follows Graph
- activities
(If provided) list of activities of the log
- activities_occurrences
(If provided) dictionary of activities occurrences
- start_activities
(If provided) dictionary of start activities occurrences
- end_activities
(If provided) dictionary of end activities occurrences
- parameters
Possible parameters of the algorithm, including:
Parameters.ACTIVITY_KEY
Parameters.TIMESTAMP_KEY
Parameters.CASE_ID_KEY
Parameters.DEPENDENCY_THRESH
Parameters.AND_MEASURE_THRESH
Parameters.MIN_ACT_COUNT
Parameters.MIN_DFG_OCCURRENCES
Parameters.DFG_PRE_CLEANING_NOISE_THRESH
Parameters.LOOP_LENGTH_TWO_THRESH
- variant
- Variant of the algorithm:
Variants.CLASSIC
Returns#
- net
Petri net
- im
Initial marking
- fm
Final marking
- pm4py.algo.discovery.heuristics.algorithm.apply_heu(log: EventLog | EventStream | DataFrame, parameters: Dict[Any, Any] | None = None, variant=Variants.CLASSIC) HeuristicsNet [source]#
Discovers an Heuristics Net using Heuristics Miner
Parameters#
- log
Event log
- parameters
Possible parameters of the algorithm, including:
Parameters.ACTIVITY_KEY
Parameters.TIMESTAMP_KEY
Parameters.CASE_ID_KEY
Parameters.DEPENDENCY_THRESH
Parameters.AND_MEASURE_THRESH
Parameters.MIN_ACT_COUNT
Parameters.MIN_DFG_OCCURRENCES
Parameters.DFG_PRE_CLEANING_NOISE_THRESH
Parameters.LOOP_LENGTH_TWO_THRESH
- variant
- Variant of the algorithm:
Variants.CLASSIC
Returns#
- net
Petri net
- im
Initial marking
- fm
Final marking
- pm4py.algo.discovery.heuristics.algorithm.apply_heu_dfg(dfg: Dict[Tuple[str, str], int], activities=None, activities_occurrences=None, start_activities=None, end_activities=None, parameters=None, variant=Variants.CLASSIC) HeuristicsNet [source]#
Discovers an Heuristics Net using Heuristics Miner
Parameters#
- dfg
Directly-Follows Graph
- activities
(If provided) list of activities of the log
- activities_occurrences
(If provided) dictionary of activities occurrences
- start_activities
(If provided) dictionary of start activities occurrences
- end_activities
(If provided) dictionary of end activities occurrences
- parameters
Possible parameters of the algorithm, including:
Parameters.ACTIVITY_KEY
Parameters.TIMESTAMP_KEY
Parameters.CASE_ID_KEY
Parameters.DEPENDENCY_THRESH
Parameters.AND_MEASURE_THRESH
Parameters.MIN_ACT_COUNT
Parameters.MIN_DFG_OCCURRENCES
Parameters.DFG_PRE_CLEANING_NOISE_THRESH
Parameters.LOOP_LENGTH_TWO_THRESH
- variant
- Variant of the algorithm:
Variants.CLASSIC
Returns#
- net
Petri net
- im
Initial marking
- fm
Final marking