pm4py.algo.discovery.minimum_self_distance package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Subpackages#
Submodules#
pm4py.algo.discovery.minimum_self_distance.algorithm module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.algo.discovery.minimum_self_distance.algorithm.Variants(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- LOG = <module 'pm4py.algo.discovery.minimum_self_distance.variants.log' from 'C:\\Users\\berti\\pm4py-core\\pm4py\\algo\\discovery\\minimum_self_distance\\variants\\log.py'>#
- PANDAS = <module 'pm4py.algo.discovery.minimum_self_distance.variants.pandas' from 'C:\\Users\\berti\\pm4py-core\\pm4py\\algo\\discovery\\minimum_self_distance\\variants\\pandas.py'>#
- pm4py.algo.discovery.minimum_self_distance.algorithm.apply(log_obj: EventLog | DataFrame | EventStream, variant: str | None = None, parameters: Dict[Any, Any] | None = None) Dict[str, int] [source]#
pm4py.algo.discovery.minimum_self_distance.utils module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.algo.discovery.minimum_self_distance.utils.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- ACTIVITY_KEY = 'pm4py:param:activity_key'#
- pm4py.algo.discovery.minimum_self_distance.utils.derive_msd_witnesses(log: EventLog, msd: Dict[Any, int] | None = None, parameters: Dict[str | Parameters, Any] | None = None) Dict[str, Set[str]] [source]#
This function derives the minimum self distance witnesses. The self distance of a in <a> is infinity, of a in <a,a> is 0, in <a,b,a> is 1, etc. The minimum self distance is the minimal observed self distance value in the event log. A ‘witness’ is an activity that witnesses the minimum self distance. For example, if the minimum self distance of activity a in some log L is 2, then, if trace <a,b,c,a> is in log L, b and c are a witness of a.
Parameters#
- log
Event Log to use
- msd
Optional minimum self distance dictionary
- parameters
Optional parameters dictionary
Returns#
Dictionary mapping each activity to a set of witnesses.