pm4py.algo.filtering.log.timestamp package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Submodules#
pm4py.algo.filtering.log.timestamp.timestamp_filter module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.algo.filtering.log.timestamp.timestamp_filter.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- TIMESTAMP_KEY = 'pm4py:param:timestamp_key'#
- pm4py.algo.filtering.log.timestamp.timestamp_filter.trace_attr_is_contained(trace: Trace, dt1: str | datetime, dt2: str | datetime, trace_attr: str) bool [source]#
Checks if the given attribute at the trace level is contained in the provided range
Parameters#
- trace
Trace object
- dt1
Left extreme of the time interval
- dt2
Right extreme of the time interval
- trace_attr
Attribute at the trace level that is considered for the filtering
Returns#
- boolean
Boolean value
- pm4py.algo.filtering.log.timestamp.timestamp_filter.filter_on_trace_attribute(log: EventLog, dt1: str | datetime, dt2: str | datetime, parameters: Dict[str | Parameters, Any] | None = None) EventLog [source]#
Filters the traces of the event log that have a given trace attribute falling in the provided range
Parameters#
- log
Event log
- dt1
Left extreme of the time interval
- dt2
Right extreme of the time interval
- parameters
Parameters of the filtering, including: - Parameters.TIMESTAMP_KEY => trace attribute to use for the filtering
Returns#
- filtered_log
Filtered event log
- pm4py.algo.filtering.log.timestamp.timestamp_filter.is_contained(trace, dt1, dt2, timestamp_key)[source]#
Check if a trace is contained in the given interval
Parameters#
- trace
Trace to check
- dt1
Lower bound to the interval
- dt2
Upper bound to the interval
- timestamp_key
Timestamp attribute
Returns#
- boolean
Is true if the trace is contained
- pm4py.algo.filtering.log.timestamp.timestamp_filter.filter_traces_contained(log: EventLog, dt1: str | datetime, dt2: str | datetime, parameters: Dict[str | Parameters, Any] | None = None) EventLog [source]#
Get traces that are contained in the given interval
Parameters#
- log
Trace log
- dt1
Lower bound to the interval
- dt2
Upper bound to the interval
- parameters
- Possible parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp
Returns#
- filtered_log
Filtered log
- pm4py.algo.filtering.log.timestamp.timestamp_filter.is_intersecting(trace, dt1, dt2, timestamp_key)[source]#
Check if a trace is intersecting in the given interval
Parameters#
- trace
Trace to check
- dt1
Lower bound to the interval
- dt2
Upper bound to the interval
- timestamp_key
Timestamp attribute
Returns#
- boolean
Is true if the trace is contained
- pm4py.algo.filtering.log.timestamp.timestamp_filter.filter_traces_intersecting(log: EventLog, dt1: str | datetime, dt2: str | datetime, parameters: Dict[str | Parameters, Any] | None = None) EventLog [source]#
Filter traces intersecting the given interval
Parameters#
- log
Trace log
- dt1
Lower bound to the interval
- dt2
Upper bound to the interval
- parameters
- Possible parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp
Returns#
- filtered_log
Filtered log
- pm4py.algo.filtering.log.timestamp.timestamp_filter.apply_events(log: EventLog, dt1: str | datetime, dt2: str | datetime, parameters: Dict[str | Parameters, Any] | None = None) EventLog [source]#
Get a new log containing all the events contained in the given interval
Parameters#
- log
Log
- dt1
Lower bound to the interval
- dt2
Upper bound to the interval
- parameters
- Possible parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp
Returns#
- filtered_log
Filtered log
- pm4py.algo.filtering.log.timestamp.timestamp_filter.has_attribute_in_timeframe(trace, attribute, attribute_value, dt1, dt2, timestamp_key)[source]#
- pm4py.algo.filtering.log.timestamp.timestamp_filter.filter_traces_attribute_in_timeframe(log: EventLog, attribute: str, attribute_value: Any, dt1: str | datetime, dt2: str | datetime, parameters: Dict[str | Parameters, Any] | None = None) EventLog [source]#
Get a new log containing all the traces that have an event in the given interval with the specified attribute value
Parameters#
- log
Log
- attribute
The attribute to filter on
- attribute_value
The attribute value to filter on
- dt1
Lower bound to the interval
- dt2
Upper bound to the interval
- parameters
- Possible parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp
Returns#
- filtered_log
Filtered log