pm4py.algo.filtering.pandas.attributes package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Submodules#
pm4py.algo.filtering.pandas.attributes.attributes_filter module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.algo.filtering.pandas.attributes.attributes_filter.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- ATTRIBUTE_KEY = 'pm4py:param:attribute_key'#
- ACTIVITY_KEY = 'pm4py:param:activity_key'#
- CASE_ID_KEY = 'pm4py:param:case_id_key'#
- DECREASING_FACTOR = 'decreasingFactor'#
- POSITIVE = 'positive'#
- STREAM_FILTER_KEY1 = 'stream_filter_key1'#
- STREAM_FILTER_VALUE1 = 'stream_filter_value1'#
- STREAM_FILTER_KEY2 = 'stream_filter_key2'#
- STREAM_FILTER_VALUE2 = 'stream_filter_value2'#
- KEEP_ONCE_PER_CASE = 'keep_once_per_case'#
- pm4py.algo.filtering.pandas.attributes.attributes_filter.apply_numeric_events(df: DataFrame, int1: float, int2: float, parameters: Dict[str | Parameters, Any] | None = None) DataFrame [source]#
Apply a filter on events (numerical filter)
Parameters#
- df
Dataframe
- int1
Lower bound of the interval
- int2
Upper bound of the interval
- parameters
- Possible parameters of the algorithm:
Parameters.ATTRIBUTE_KEY => indicates which attribute to filter positive => keep or remove events?
Returns#
- filtered_df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.apply_numeric(df: DataFrame, int1: float, int2: float, parameters: Dict[str | Parameters, Any] | None = None) DataFrame [source]#
Filter dataframe on attribute values (filter cases)
Parameters#
- df
Dataframe
- int1
Lower bound of the interval
- int2
Upper bound of the interval
- parameters
- Possible parameters of the algorithm:
Parameters.ATTRIBUTE_KEY => indicates which attribute to filter Parameters.POSITIVE => keep or remove traces with such events?
Returns#
- filtered_df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.apply_events(df: DataFrame, values: List[str], parameters: Dict[str | Parameters, Any] | None = None) DataFrame [source]#
Filter dataframe on attribute values (filter events)
Parameters#
- df
Dataframe
- values
Values to filter on
- parameters
- Possible parameters of the algorithm, including:
Parameters.ATTRIBUTE_KEY -> Attribute we want to filter Parameters.POSITIVE -> Specifies if the filter should be applied including traces (positive=True) or excluding traces (positive=False)
Returns#
- df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.apply(df: DataFrame, values: List[str], parameters: Dict[str | Parameters, Any] | None = None) DataFrame [source]#
Filter dataframe on attribute values (filter traces)
Parameters#
- df
Dataframe
- values
Values to filter on
- parameters
- Possible parameters of the algorithm, including:
Parameters.CASE_ID_KEY -> Case ID column in the dataframe Parameters.ATTRIBUTE_KEY -> Attribute we want to filter Parameters.POSITIVE -> Specifies if the filter should be applied including traces (positive=True) or excluding traces (positive=False)
Returns#
- df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.filter_df_on_attribute_values(df, values, case_id_glue='case:concept:name', attribute_key='concept:name', positive=True)[source]#
Filter dataframe on attribute values
Parameters#
- df
Dataframe
- values
Values to filter on
- case_id_glue
Case ID column in the dataframe
- attribute_key
Attribute we want to filter
- positive
Specifies if the filtered should be applied including traces (positive=True) or excluding traces (positive=False)
Returns#
- df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.filter_df_keeping_activ_exc_thresh(df, thresh, act_count0=None, activity_key='concept:name', most_common_variant=None)[source]#
Filter a dataframe keeping activities exceeding the threshold
Parameters#
- df
Pandas dataframe
- thresh
Threshold to use to cut activities
- act_count0
(If provided) Dictionary that associates each activity with its count
- activity_key
Column in which the activity is present
Returns#
- df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.filter_df_keeping_spno_activities(df: DataFrame, activity_key: str = 'concept:name', max_no_activities: int = 25)[source]#
Filter a dataframe on the specified number of attributes
Parameters#
- df
Dataframe
- activity_key
Activity key in dataframe (must be specified if different from concept:name)
- max_no_activities
Maximum allowed number of attributes
Returns#
- df
Filtered dataframe
- pm4py.algo.filtering.pandas.attributes.attributes_filter.filter_df_relative_occurrence_event_attribute(df: DataFrame, min_relative_stake: float, parameters: Dict[Any, Any] | None = None) DataFrame [source]#
Filters the event log keeping only the events having an attribute value which occurs: - in at least the specified (min_relative_stake) percentage of events, when Parameters.KEEP_ONCE_PER_CASE = False - in at least the specified (min_relative_stake) percentage of cases, when Parameters.KEEP_ONCE_PER_CASE = True
Parameters#
- df
Pandas dataframe
- min_relative_stake
Minimum percentage of cases (expressed as a number between 0 and 1) in which the attribute should occur.
- parameters
Parameters of the algorithm, including: - Parameters.ATTRIBUTE_KEY => the attribute to use (default: concept:name) - Parameters.KEEP_ONCE_PER_CASE => decides the level of the filter to apply (if the filter should be applied on the cases, set it to True).
Returns#
- filtered_df
Filtered Pandas dataframe