pm4py.statistics.attributes.common package#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

Submodules#

pm4py.statistics.attributes.common.get module#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

class pm4py.statistics.attributes.common.get.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#

Bases: Enum

GRAPH_POINTS = 'graph_points'#
POINT_TO_SAMPLE = 'points_to_sample'#
pm4py.statistics.attributes.common.get.get_sorted_attributes_list(attributes)[source]#

Gets sorted attributes list

Parameters#

attributes

Dictionary of attributes associated with their count

Returns#

listact

Sorted end attributes list

pm4py.statistics.attributes.common.get.get_attributes_threshold(alist, decreasing_factor, min_activity_count=1, max_activity_count=25)[source]#

Get attributes cutting threshold

Parameters#

alist

Sorted attributes list

decreasing_factor

Decreasing factor of the algorithm

min_activity_count

Minimum number of activities to include

max_activity_count

Maximum number of activities to include

Returns#

threshold

Activities cutting threshold

pm4py.statistics.attributes.common.get.get_kde_numeric_attribute(values, parameters=None)[source]#

Gets the KDE estimation for the distribution of a numeric attribute values

Parameters#

values

Values of the numeric attribute value

parameters
Possible parameters of the algorithm, including:

graph_points -> number of points to include in the graph

Returns#

x

X-axis values to represent

y

Y-axis values to represent

pm4py.statistics.attributes.common.get.get_kde_numeric_attribute_json(values, parameters=None)[source]#

Gets the KDE estimation for the distribution of a numeric attribute values (expressed as JSON)

Parameters#

values

Values of the numeric attribute value

parameters
Possible parameters of the algorithm, including:

graph_points: number of points to include in the graph

Returns#

json

JSON representing the graph points

pm4py.statistics.attributes.common.get.get_kde_date_attribute(values, parameters=None)[source]#

Gets the KDE estimation for the distribution of a date attribute values

Parameters#

values

Values of the date attribute value

parameters
Possible parameters of the algorithm, including:

graph_points -> number of points to include in the graph

Returns#

x

X-axis values to represent

y

Y-axis values to represent

pm4py.statistics.attributes.common.get.get_kde_date_attribute_json(values, parameters=None)[source]#

Gets the KDE estimation for the distribution of a date attribute values (expressed as JSON)

Parameters#

values

Values of the date attribute value

parameters
Possible parameters of the algorithm, including:

graph_points: number of points to include in the graph

Returns#

json

JSON representing the graph points