pm4py.statistics.traces.generic.log package#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
Submodules#
pm4py.statistics.traces.generic.log.case_arrival module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.statistics.traces.generic.log.case_arrival.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- ATTRIBUTE_KEY = 'pm4py:param:attribute_key'#
- ACTIVITY_KEY = 'pm4py:param:activity_key'#
- TIMESTAMP_KEY = 'pm4py:param:timestamp_key'#
- CASE_ID_KEY = 'pm4py:param:case_id_key'#
- BUSINESS_HOURS = 'business_hours'#
- BUSINESS_HOUR_SLOTS = 'business_hour_slots'#
- WORKCALENDAR = 'workcalendar'#
- pm4py.statistics.traces.generic.log.case_arrival.get_case_arrival_avg(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None) float [source]#
Gets the average time interlapsed between case starts
Parameters#
- log
Trace log
- parameters
- Parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp
Returns#
- case_arrival_avg
Average time interlapsed between case starts
- pm4py.statistics.traces.generic.log.case_arrival.get_case_dispersion_avg(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None) float [source]#
Gets the average time interlapsed between case ends
Parameters#
- log
Trace log
- parameters
- Parameters of the algorithm, including:
Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp
Returns#
- case_dispersion_avg
Average time interlapsed between the completion of cases
pm4py.statistics.traces.generic.log.case_statistics module#
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions Contact: info@processintelligence.solutions
- class pm4py.statistics.traces.generic.log.case_statistics.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- ATTRIBUTE_KEY = 'pm4py:param:attribute_key'#
- ACTIVITY_KEY = 'pm4py:param:activity_key'#
- TIMESTAMP_KEY = 'pm4py:param:timestamp_key'#
- CASE_ID_KEY = 'pm4py:param:case_id_key'#
- MAX_VARIANTS_TO_RETURN = 'max_variants_to_return'#
- VARIANTS = 'variants'#
- VAR_DURATIONS = 'var_durations'#
- ENABLE_SORT = 'enable_sort'#
- SORT_BY_INDEX = 'sort_by_index'#
- SORT_ASCENDING = 'sort_ascending'#
- MAX_RET_CASES = 'max_ret_cases'#
- BUSINESS_HOURS = 'business_hours'#
- BUSINESS_HOUR_SLOTS = 'business_hour_slots'#
- WORKCALENDAR = 'workcalendar'#
- INDEXED_LOG = 'indexed_log'#
- pm4py.statistics.traces.generic.log.case_statistics.get_variant_statistics(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None) List[Dict[str, int]] | List[Dict[List[str], int]] [source]#
Gets a dictionary whose key is the variant and as value there is the list of traces that share the variant
Parameters#
- log
Log
- parameters
- Parameters of the algorithm, including:
Parameters.ACTIVITY_KEY -> Attribute identifying the activity in the log Parameters.MAX_VARIANTS_TO_RETURN -> Maximum number of variants to return Parameters.VARIANT -> If provided, avoid recalculation of the variants
Returns#
- variants_list
List of variants along the statistics
- pm4py.statistics.traces.generic.log.case_statistics.get_cases_description(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None) Dict[str, Dict[str, Any]] [source]#
Get a description of traces present in the log
Parameters#
- log
Log
- parameters
Parameters of the algorithm, including: Parameters.CASE_ID_KEY -> Trace attribute in which the case ID is contained Parameters.TIMESTAMP_KEY -> Column that identifies the timestamp Parameters.ENABLE_SORT -> Enable sorting of traces Parameters.SORT_BY_INDEX -> Sort the traces using this index:
0 -> case ID 1 -> start time 2 -> end time 3 -> difference
Parameters.SORT_ASCENDING -> Set sort direction (boolean; it true then the sort direction is ascending, otherwise descending) Parameters.MAX_RET_CASES -> Set the maximum number of returned traces
Returns#
- ret
Dictionary of traces associated to their start timestamp, their end timestamp and their duration
- pm4py.statistics.traces.generic.log.case_statistics.index_log_caseid(log, parameters=None)[source]#
Index a log according to case ID
Parameters#
- log
Log object
- parameters
- Possible parameters of the algorithm, including:
Parameters.CASE_ID_KEY -> Trace attribute in which the Case ID is contained
Returns#
- dict
Dictionary that has the case IDs as keys and the corresponding case as value
- pm4py.statistics.traces.generic.log.case_statistics.get_events(log: EventLog, case_id: str, parameters: Dict[str | Parameters, Any] | None = None) List[Dict[str, Any]] [source]#
Get events belonging to the specified case
Parameters#
- log
Log object
- case_id
Required case ID
- parameters
- Possible parameters of the algorithm, including:
Parameters.CASE_ID_KEY -> Trace attribute in which the case ID is contained Parameters.INDEXED_LOG -> Indexed log (if it has been calculated previously)
Returns#
- list_eve
List of events belonging to the case
- pm4py.statistics.traces.generic.log.case_statistics.get_all_case_durations(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None) List[float] [source]#
Gets all the case durations out of the log
Parameters#
- log
Log object
- parameters
Possible parameters of the algorithm
Returns#
- duration_values
List of all duration values
- pm4py.statistics.traces.generic.log.case_statistics.get_first_quartile_case_duration(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None) float [source]#
Gets the first quartile out of the log
Parameters#
- log
Log
- parameters
Possible parameters of the algorithm
Returns#
- value
First quartile value
- pm4py.statistics.traces.generic.log.case_statistics.get_median_case_duration(log: EventLog, parameters: Dict[str | Parameters, Any] | None = None)[source]#
Gets the median case duration out of the log
Parameters#
- log
Log
- parameters
Possible parameters of the algorithm
Returns#
- value
Median duration value
- pm4py.statistics.traces.generic.log.case_statistics.get_kde_caseduration(log, parameters=None)[source]#
Gets the estimation of KDE density for the case durations calculated on the log
Parameters#
- log
Log object
- parameters
- Possible parameters of the algorithm, including:
Parameters.GRAPH_POINTS -> number of points to include in the graph
Returns#
- x
X-axis values to represent
- y
Y-axis values to represent
- pm4py.statistics.traces.generic.log.case_statistics.get_kde_caseduration_json(log, parameters=None)[source]#
Gets the estimation of KDE density for the case durations calculated on the log (expressed as JSON)
Parameters#
- log
Log object
- parameters
- Possible parameters of the algorithm, including:
Parameters.GRAPH_POINTS -> number of points to include in the graph Parameters.CASE_ID_KEY -> Column hosting the Case ID
Returns#
- json
JSON representing the graph points