pm4py.statistics.traces.generic.pandas package#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

Submodules#

pm4py.statistics.traces.generic.pandas.case_arrival module#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

class pm4py.statistics.traces.generic.pandas.case_arrival.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#

Bases: Enum

ATTRIBUTE_KEY = 'pm4py:param:attribute_key'#
ACTIVITY_KEY = 'pm4py:param:activity_key'#
START_TIMESTAMP_KEY = 'pm4py:param:start_timestamp_key'#
TIMESTAMP_KEY = 'pm4py:param:timestamp_key'#
CASE_ID_KEY = 'pm4py:param:case_id_key'#
MAX_NO_POINTS_SAMPLE = 'max_no_of_points_to_sample'#
KEEP_ONCE_PER_CASE = 'keep_once_per_case'#
pm4py.statistics.traces.generic.pandas.case_arrival.get_case_arrival_avg(df: DataFrame, parameters: Dict[str | Parameters, Any] | None = None) float[source]#

Gets the average time interlapsed between case starts

Parameters#

df

Pandas dataframe

parameters
Parameters of the algorithm, including:

Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp

Returns#

case_arrival_avg

Average time interlapsed between case starts

pm4py.statistics.traces.generic.pandas.case_arrival.get_case_dispersion_avg(df, parameters=None)[source]#

Gets the average time interlapsed between case ends

Parameters#

df

Pandas dataframe

parameters
Parameters of the algorithm, including:

Parameters.TIMESTAMP_KEY -> attribute of the log to be used as timestamp

Returns#

case_dispersion_avg

Average time interlapsed between the completion of cases

pm4py.statistics.traces.generic.pandas.case_statistics module#

PM4Py – A Process Mining Library for Python

Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see this software project’s root or visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions Contact: info@processintelligence.solutions

class pm4py.statistics.traces.generic.pandas.case_statistics.Parameters(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#

Bases: Enum

ATTRIBUTE_KEY = 'pm4py:param:attribute_key'#
ACTIVITY_KEY = 'pm4py:param:activity_key'#
TIMESTAMP_KEY = 'pm4py:param:timestamp_key'#
CASE_ID_KEY = 'pm4py:param:case_id_key'#
START_TIMESTAMP_KEY = 'pm4py:param:start_timestamp_key'#
MAX_VARIANTS_TO_RETURN = 'max_variants_to_return'#
VARIANTS_DF = 'variants_df'#
ENABLE_SORT = 'enable_sort'#
SORT_BY_COLUMN = 'sort_by_column'#
SORT_ASCENDING = 'sort_ascending'#
MAX_RET_CASES = 'max_ret_cases'#
BUSINESS_HOURS = 'business_hours'#
BUSINESS_HOUR_SLOTS = 'business_hour_slots'#
WORKCALENDAR = 'workcalendar'#
pm4py.statistics.traces.generic.pandas.case_statistics.get_variant_statistics(df: DataFrame, parameters: Dict[str | Parameters, Any] | None = None) List[Dict[str, int]] | List[Dict[List[str], int]][source]#

Get variants from a Pandas dataframe

Parameters#

df

Dataframe

parameters
Parameters of the algorithm, including:

Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity Parameters.MAX_VARIANTS_TO_RETURN -> Maximum number of variants to return variants_df -> If provided, avoid recalculation of the variants dataframe

Returns#

variants_list

List of variants inside the Pandas dataframe

pm4py.statistics.traces.generic.pandas.case_statistics.get_variants_df_and_list(df: DataFrame, parameters: Dict[str | Parameters, Any] | None = None) Tuple[DataFrame, List[Dict[str, int]] | List[Dict[List[str], int]]][source]#

(Technical method) Provides variants_df and variants_list out of the box

Parameters#

df

Dataframe

parameters
Parameters of the algorithm, including:

Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity

Returns#

variants_df

Variants dataframe

variants_list

List of variants sorted by their count

pm4py.statistics.traces.generic.pandas.case_statistics.get_cases_description(df: DataFrame, parameters: Dict[str | Parameters, Any] | None = None) Dict[str, Dict[str, Any]][source]#

Get a description of traces present in the Pandas dataframe

Parameters#

df

Pandas dataframe

parameters
Parameters of the algorithm, including:

Parameters.CASE_ID_KEY -> Column that identifies the case ID Parameters.TIMESTAMP_KEY -> Column that identifies the timestamp enable_sort -> Enable sorting of traces Parameters.SORT_BY_COLUMN -> Sort traces inside the dataframe using the specified column. Admitted values: startTime, endTime, caseDuration Parameters.SORT_ASCENDING -> Set sort direction (boolean; it true then the sort direction is ascending, otherwise descending) Parameters.MAX_RET_CASES -> Set the maximum number of returned traces

Returns#

ret

Dictionary of traces associated to their start timestamp, their end timestamp and their duration

pm4py.statistics.traces.generic.pandas.case_statistics.get_variants_df(df, parameters=None)[source]#

Get variants dataframe from a Pandas dataframe

Parameters#

df

Dataframe

parameters
Parameters of the algorithm, including:

Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity

Returns#

variants_df

Variants dataframe

pm4py.statistics.traces.generic.pandas.case_statistics.get_variants_df_with_case_duration(df, parameters=None)[source]#

Get variants dataframe from a Pandas dataframe, with case duration that is included

Parameters#

df

Dataframe

parameters
Parameters of the algorithm, including:

Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity Parameters.TIMESTAMP_KEY -> Column that contains the timestamp

Returns#

variants_df

Variants dataframe

pm4py.statistics.traces.generic.pandas.case_statistics.get_events(df: DataFrame, case_id: str, parameters: Dict[str | Parameters, Any] | None = None) List[Dict[str, Any]][source]#

Get events belonging to the specified case

Parameters#

df

Pandas dataframe

case_id

Required case ID

parameters
Possible parameters of the algorithm, including:

Parameters.CASE_ID_KEY -> Column in which the case ID is contained

Returns#

list_eve

List of events belonging to the case

pm4py.statistics.traces.generic.pandas.case_statistics.get_kde_caseduration(df, parameters=None)[source]#

Gets the estimation of KDE density for the case durations calculated on the dataframe

Parameters#

df

Pandas dataframe

parameters
Possible parameters of the algorithm, including:

Parameters.GRAPH_POINTS -> number of points to include in the graph Parameters.CASE_ID_KEY -> Column hosting the Case ID

Returns#

x

X-axis values to represent

y

Y-axis values to represent

pm4py.statistics.traces.generic.pandas.case_statistics.get_kde_caseduration_json(df, parameters=None)[source]#

Gets the estimation of KDE density for the case durations calculated on the log/dataframe (expressed as JSON)

Parameters#

df

Pandas dataframe

parameters
Possible parameters of the algorithm, including:

Parameters.GRAPH_POINTS -> number of points to include in the graph Parameters.CASE_ID_KEY -> Column hosting the Case ID

Returns#

json

JSON representing the graph points

pm4py.statistics.traces.generic.pandas.case_statistics.get_all_case_durations(df, parameters=None)[source]#

Gets all the case durations out of the log

Parameters#

df

Pandas dataframe

parameters

Possible parameters of the algorithm

Returns#

duration_values

List of all duration values

pm4py.statistics.traces.generic.pandas.case_statistics.get_first_quartile_case_duration(df, parameters=None)[source]#

Gets the first quartile out of the log

Parameters#

df

Pandas dataframe

parameters

Possible parameters of the algorithm

Returns#

value

First quartile value

pm4py.statistics.traces.generic.pandas.case_statistics.get_median_case_duration(df, parameters=None)[source]#

Gets the median case duration out of the log

Parameters#

df

Pandas dataframe

parameters

Possible parameters of the algorithm

Returns#

value

Median duration value