Source code for pm4py.algo.analysis.woflan.place_invariants.s_component

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.analysis.woflan.place_invariants.uniform_invariant import (
    apply as compute_uniform_invariants,
)


[docs] def apply(net): """ General method to obtain a list of S-components :param net: Petri Net for which S-components should be computed :return: A list of S-components """ uniform_invariants = compute_uniform_invariants(net) return compute_s_components(net, uniform_invariants)
[docs] def compute_s_components(net, p_invariants): """ We perform the hint in 5.4.4 of https://pure.tue.nl/ws/portalfiles/portal/1596223/9715985.pdf :param p_invariants: Semi-positive basis we calculate previously :return: A list of S-Components. A s-component consists of a set which includes all related transitions a places """ def compare_lists(list1, list2): """ :param list1: a list :param list2: a list :return: a number how often a item from list1 appears in list2 """ counter = 0 for el in list1: if el in list2: counter += 1 return counter s_components = [] place_list = sorted(list(net.places), key=lambda x: x.name) for invariant in p_invariants: i = 0 s_component = [] for el in invariant: if el > 0: place = place_list[i] s_component.append(place) for in_arc in place.in_arcs: s_component.append(in_arc.source) for out_arc in place.out_arcs: s_component.append(out_arc.target) i += 1 if len(s_component) != 0: is_s_component = True for el in s_component: if el in net.transitions: places_before = [arc.source for arc in el.in_arcs] comparison_before = compare_lists( s_component, places_before ) places_after = [arc.target for arc in el.out_arcs] comparison_after = compare_lists(s_component, places_after) if comparison_before != 1: is_s_component = False break if comparison_after != 1: is_s_component = False break if is_s_component: s_components.append(set(s_component)) return s_components
[docs] def compute_uncovered_places_in_component(s_components, net): """ We check for uncovered places :param s_components: List of s_components :param net: Petri Net representation of PM4Py :return: List of uncovered places """ place_list = sorted(list(net.places), key=lambda x: x.name) for component in s_components: for el in component: if el in place_list: place_list.remove(el) return place_list