Source code for pm4py.algo.clustering.profiles.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from pm4py.util import exec_utils
from pm4py.algo.clustering.profiles.variants import sklearn_profiles
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from typing import Optional, Dict, Any, Generator, Union


[docs] class Variants(Enum): SKLEARN_PROFILES = sklearn_profiles
[docs] def apply( log: Union[EventLog, EventStream, pd.DataFrame], variant=Variants.SKLEARN_PROFILES, parameters: Optional[Dict[Any, Any]] = None, ) -> Generator[EventLog, None, None]: """ Apply clustering to the provided event log (methods based on the extraction of profiles for the traces of the event log) Implements the approach described in: Song, Minseok, Christian W. Günther, and Wil MP Van der Aalst. "Trace clustering in process mining." Business Process Management Workshops: BPM 2008 International Workshops, Milano, Italy, September 1-4, 2008. Revised Papers 6. Springer Berlin Heidelberg, 2009. Parameters ---------------- log Event log variant Variant of the clustering to be used, available values: - Variants.SKLEARN_PROFILES parameters Variant-specific parameters Returns ---------------- generator Generator of dataframes (clusters) """ return exec_utils.get_variant(variant).apply(log, parameters=parameters)