'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import numpy as np
from scipy.spatial.distance import pdist
from pm4py.algo.discovery.dfg import algorithm as dfg_algorithm
from pm4py.statistics.attributes.log import get as attributes_filter
import pandas as pd
from pm4py.util import pandas_utils
from pm4py.algo.clustering.trace_attribute_driven.variants import act_dist_calc
[docs]
def dfg_dist_calc_act(log1, log2):
act1 = attributes_filter.get_attribute_values(log1, "concept:name")
act2 = attributes_filter.get_attribute_values(log2, "concept:name")
df1_act = act_dist_calc.occu_var_act(act1)
df2_act = act_dist_calc.occu_var_act(act2)
df_act = pandas_utils.merge(
df1_act, df2_act, how="outer", on="var"
).fillna(0)
dist_act = pdist(
np.array([df_act["freq_x"].values, df_act["freq_y"].values]), "cosine"
)[0]
return dist_act
[docs]
def dfg_dist_calc_suc(log1, log2):
dfg1 = dfg_algorithm.apply(log1)
dfg2 = dfg_algorithm.apply(log2)
df1_dfg = act_dist_calc.occu_var_act(dfg1)
df2_dfg = act_dist_calc.occu_var_act(dfg2)
df_dfg = pandas_utils.merge(
df1_dfg, df2_dfg, how="outer", on="var"
).fillna(0)
dist_dfg = pdist(
np.array([df_dfg["freq_x"].values, df_dfg["freq_y"].values]), "cosine"
)[0]
return dist_dfg
[docs]
def dfg_dist_calc(log1, log2):
act1 = attributes_filter.get_attribute_values(log1, "concept:name")
act2 = attributes_filter.get_attribute_values(log2, "concept:name")
dfg1 = dfg_algorithm.apply(log1)
dfg2 = dfg_algorithm.apply(log2)
df1_act = act_dist_calc.occu_var_act(act1)
df2_act = act_dist_calc.occu_var_act(act2)
df1_dfg = act_dist_calc.occu_var_act(dfg1)
df2_dfg = act_dist_calc.occu_var_act(dfg2)
df_act = pandas_utils.merge(
df1_act, df2_act, how="outer", on="var"
).fillna(0)
df_dfg = pandas_utils.merge(
df1_dfg, df2_dfg, how="outer", on="var"
).fillna(0)
dist_act = pdist(
np.array([df_act["freq_x"].values, df_act["freq_y"].values]), "cosine"
)[0]
dist_dfg = pdist(
np.array([df_dfg["freq_x"].values, df_dfg["freq_y"].values]), "cosine"
)[0]
if np.isnan(dist_dfg):
dist_dfg = 1
return dist_act, dist_dfg
[docs]
def dfg_dist_calc_minkowski(log1, log2, alpha):
act1 = attributes_filter.get_attribute_values(log1, "concept:name")
act2 = attributes_filter.get_attribute_values(log2, "concept:name")
dfg1 = dfg_algorithm.apply(log1)
dfg2 = dfg_algorithm.apply(log2)
df1_act = act_dist_calc.occu_var_act(act1)
df2_act = act_dist_calc.occu_var_act(act2)
df1_dfg = act_dist_calc.occu_var_act(dfg1)
df2_dfg = act_dist_calc.occu_var_act(dfg2)
df_act = pandas_utils.merge(
df1_act, df2_act, how="outer", on="var"
).fillna(0)
df_dfg = pandas_utils.merge(
df1_dfg, df2_dfg, how="outer", on="var"
).fillna(0)
dist_act = pdist(
np.array(
[
df_act["freq_x"].values / np.sum(df_act["freq_x"].values),
df_act["freq_y"].values / np.sum(df_act["freq_y"].values),
]
),
"minkowski",
p=2.0,
)[0]
dist_dfg = pdist(
np.array(
[
df_dfg["freq_x"].values / np.sum(df_dfg["freq_x"].values),
df_dfg["freq_y"].values / np.sum(df_dfg["freq_y"].values),
]
),
"minkowski",
p=2.0,
)[0]
dist = dist_act * alpha + dist_dfg * (1 - alpha)
return dist