Source code for pm4py.algo.clustering.trace_attribute_driven.dfg.dfg_dist

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import numpy as np
from scipy.spatial.distance import pdist
from pm4py.algo.discovery.dfg import algorithm as dfg_algorithm
from pm4py.statistics.attributes.log import get as attributes_filter
import pandas as pd
from pm4py.util import pandas_utils
from pm4py.algo.clustering.trace_attribute_driven.variants import act_dist_calc


[docs] def dfg_dist_calc_act(log1, log2): act1 = attributes_filter.get_attribute_values(log1, "concept:name") act2 = attributes_filter.get_attribute_values(log2, "concept:name") df1_act = act_dist_calc.occu_var_act(act1) df2_act = act_dist_calc.occu_var_act(act2) df_act = pandas_utils.merge( df1_act, df2_act, how="outer", on="var" ).fillna(0) dist_act = pdist( np.array([df_act["freq_x"].values, df_act["freq_y"].values]), "cosine" )[0] return dist_act
[docs] def dfg_dist_calc_suc(log1, log2): dfg1 = dfg_algorithm.apply(log1) dfg2 = dfg_algorithm.apply(log2) df1_dfg = act_dist_calc.occu_var_act(dfg1) df2_dfg = act_dist_calc.occu_var_act(dfg2) df_dfg = pandas_utils.merge( df1_dfg, df2_dfg, how="outer", on="var" ).fillna(0) dist_dfg = pdist( np.array([df_dfg["freq_x"].values, df_dfg["freq_y"].values]), "cosine" )[0] return dist_dfg
[docs] def dfg_dist_calc(log1, log2): act1 = attributes_filter.get_attribute_values(log1, "concept:name") act2 = attributes_filter.get_attribute_values(log2, "concept:name") dfg1 = dfg_algorithm.apply(log1) dfg2 = dfg_algorithm.apply(log2) df1_act = act_dist_calc.occu_var_act(act1) df2_act = act_dist_calc.occu_var_act(act2) df1_dfg = act_dist_calc.occu_var_act(dfg1) df2_dfg = act_dist_calc.occu_var_act(dfg2) df_act = pandas_utils.merge( df1_act, df2_act, how="outer", on="var" ).fillna(0) df_dfg = pandas_utils.merge( df1_dfg, df2_dfg, how="outer", on="var" ).fillna(0) dist_act = pdist( np.array([df_act["freq_x"].values, df_act["freq_y"].values]), "cosine" )[0] dist_dfg = pdist( np.array([df_dfg["freq_x"].values, df_dfg["freq_y"].values]), "cosine" )[0] if np.isnan(dist_dfg): dist_dfg = 1 return dist_act, dist_dfg
[docs] def dfg_dist_calc_minkowski(log1, log2, alpha): act1 = attributes_filter.get_attribute_values(log1, "concept:name") act2 = attributes_filter.get_attribute_values(log2, "concept:name") dfg1 = dfg_algorithm.apply(log1) dfg2 = dfg_algorithm.apply(log2) df1_act = act_dist_calc.occu_var_act(act1) df2_act = act_dist_calc.occu_var_act(act2) df1_dfg = act_dist_calc.occu_var_act(dfg1) df2_dfg = act_dist_calc.occu_var_act(dfg2) df_act = pandas_utils.merge( df1_act, df2_act, how="outer", on="var" ).fillna(0) df_dfg = pandas_utils.merge( df1_dfg, df2_dfg, how="outer", on="var" ).fillna(0) dist_act = pdist( np.array( [ df_act["freq_x"].values / np.sum(df_act["freq_x"].values), df_act["freq_y"].values / np.sum(df_act["freq_y"].values), ] ), "minkowski", p=2.0, )[0] dist_dfg = pdist( np.array( [ df_dfg["freq_x"].values / np.sum(df_dfg["freq_x"].values), df_dfg["freq_y"].values / np.sum(df_dfg["freq_y"].values), ] ), "minkowski", p=2.0, )[0] dist = dist_act * alpha + dist_dfg * (1 - alpha) return dist