Source code for pm4py.algo.clustering.trace_attribute_driven.variants.sim_calc

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import pandas as pd
import numpy as np
from pm4py.algo.clustering.trace_attribute_driven.variants import (
    act_dist_calc,
    suc_dist_calc,
)
from pm4py.algo.clustering.trace_attribute_driven.util import filter_subsets
from scipy.spatial.distance import pdist
from pm4py.util import exec_utils
from enum import Enum
from pm4py.util import constants, pandas_utils


[docs] class Parameters(Enum): ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY SINGLE = "single" BINARIZE = "binarize" POSITIVE = "positive" LOWER_PERCENT = "lower_percent"
[docs] def inner_prod_calc(df): innerprod = ((df.loc[:, "freq_x"]) * (df.loc[:, "freq_y"])).sum() sqrt_1 = np.sqrt(((df.loc[:, "freq_x"]) ** 2).sum()) sqrt_2 = np.sqrt(((df.loc[:, "freq_y"]) ** 2).sum()) return innerprod, sqrt_1, sqrt_2
[docs] def dist_calc( var_list_1, var_list_2, log1, log2, freq_thres, num, alpha, parameters=None ): """ this function compare the activity similarity between two sublogs via the two lists of variants. :param var_list_1: lists of variants in sublog 1 :param var_list_2: lists of variants in sublog 2 :param freq_thres: same as sublog2df() :param log1: input sublog1 of sublog2df(), which must correspond to var_list_1 :param log2: input sublog2 of sublog2df(), which must correspond to var_list_2 :param alpha: the weight parameter between activity similarity and succession similarity, which belongs to (0,1) :param parameters: state which linkage method to use :return: the similarity value between two sublogs """ if parameters is None: parameters = {} single = exec_utils.get_param_value(Parameters.SINGLE, parameters, False) if len(var_list_1) >= len(var_list_2): max_len = len(var_list_1) min_len = len(var_list_2) max_var = var_list_1 min_var = var_list_2 var_count_max = filter_subsets.sublog2df(log1, freq_thres, num)[ "count" ] var_count_min = filter_subsets.sublog2df(log2, freq_thres, num)[ "count" ] else: max_len = len(var_list_2) min_len = len(var_list_1) max_var = var_list_2 min_var = var_list_1 var_count_max = filter_subsets.sublog2df(log2, freq_thres, num)[ "count" ] var_count_min = filter_subsets.sublog2df(log1, freq_thres, num)[ "count" ] # act max_per_var_act = np.zeros(max_len) max_freq_act = np.zeros(max_len) col_sum_act = np.zeros(max_len) # suc max_per_var_suc = np.zeros(max_len) col_sum_suc = np.zeros(max_len) max_freq_suc = np.zeros(max_len) if var_list_1 == var_list_2: print("Please give different variant lists!") else: for i in range(max_len): dist_vec_act = np.zeros(min_len) dist_vec_suc = np.zeros(min_len) df_1_act = act_dist_calc.occu_var_act(max_var[i]) df_1_suc = suc_dist_calc.occu_var_suc( max_var[i], parameters={"binarize": True} ) for j in range(min_len): df_2_act = act_dist_calc.occu_var_act(min_var[j]) df_2_suc = suc_dist_calc.occu_var_suc( min_var[j], parameters={"binarize": True} ) df_act = pandas_utils.merge( df_1_act, df_2_act, how="outer", on="var" ).fillna(0) df_suc = pandas_utils.merge( df_1_suc, df_2_suc, how="outer", on="direct_suc" ).fillna(0) dist_vec_act[j] = pdist( np.array( [df_act["freq_x"].values, df_act["freq_y"].values] ), "cosine", )[0] dist_vec_suc[j] = pdist( np.array( [df_suc["freq_x"].values, df_suc["freq_y"].values] ), "cosine", )[0] if single: if (abs(dist_vec_act[j]) <= 1e-8) and ( abs(dist_vec_suc[j]) <= 1e-6 ): # ensure both are 1 max_freq_act[i] = ( var_count_max.iloc[i] * var_count_min.iloc[j] ) max_freq_suc[i] = max_freq_act[i] max_per_var_act[i] = dist_vec_act[j] * max_freq_act[i] max_per_var_suc[i] = dist_vec_suc[j] * max_freq_suc[i] break elif j == (min_len - 1): max_loc_col_act = np.argmin( dist_vec_act ) # location of max value max_loc_col_suc = np.argmin( dist_vec_suc ) # location of max value max_freq_act[i] = ( var_count_max.iloc[i] * var_count_min.iloc[max_loc_col_act] ) max_freq_suc[i] = ( var_count_max.iloc[i] * var_count_min.iloc[max_loc_col_suc] ) max_per_var_act[i] = ( dist_vec_act[max_loc_col_act] * max_freq_act[i] ) max_per_var_suc[i] = ( dist_vec_suc[max_loc_col_suc] * max_freq_suc[i] ) else: col_sum_act[i] += ( dist_vec_act[j] * var_count_max.iloc[i] * var_count_min.iloc[j] ) col_sum_suc[i] += ( dist_vec_suc[j] * var_count_max.iloc[i] * var_count_min.iloc[j] ) if single: # single linkage dist_act = np.sum(max_per_var_act) / np.sum(max_freq_act) dist_suc = np.sum(max_per_var_suc) / np.sum(max_freq_suc) dist = dist_act * alpha + dist_suc * (1 - alpha) else: vmax_vec = (var_count_max.values).reshape(-1, 1) vmin_vec = (var_count_min.values).reshape(1, -1) vec_sum = np.sum(np.dot(vmax_vec, vmin_vec)) dist = ( np.sum(col_sum_act) * alpha + np.sum(col_sum_suc) * (1 - alpha) ) / vec_sum return dist