Source code for pm4py.algo.comparison.petrinet.element_usage_comparison

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or 
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.conformance.tokenreplay import algorithm as tr_algorithm
from pm4py.util.colors import get_string_from_int_below_255
from collections import Counter
from copy import copy
import matplotlib as mpl
import matplotlib.cm as cm
import math
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.objects.conversion.log import converter as log_converter
import pandas as pd


[docs] def give_color_to_direction_dynamic(dir): """ Assigns a color to the direction (dynamic-defined colors) Parameters -------------- dir Direction Returns -------------- col Color """ dir = 0.5 + 0.5 * dir norm = mpl.colors.Normalize(vmin=0, vmax=1) nodes = [0.0, 0.01, 0.25, 0.4, 0.45, 0.55, 0.75, 0.99, 1.0] colors = [ "deepskyblue", "skyblue", "lightcyan", "lightgray", "gray", "lightgray", "mistyrose", "salmon", "tomato", ] cmap = mpl.colors.LinearSegmentedColormap.from_list( "mycmap2", list(zip(nodes, colors)) ) # cmap = cm.plasma m = cm.ScalarMappable(norm=norm, cmap=cmap) rgba = m.to_rgba(dir) r = get_string_from_int_below_255(math.ceil(rgba[0] * 255.0)) g = get_string_from_int_below_255(math.ceil(rgba[1] * 255.0)) b = get_string_from_int_below_255(math.ceil(rgba[2] * 255.0)) return "#" + r + g + b
[docs] def give_color_to_direction_static(dir): """ Assigns a color to the direction (static-defined colors) Parameters -------------- dir Direction Returns -------------- col Color """ direction_colors = [ [-0.5, "#4444FF"], [-0.1, "#AAAAFF"], [0.0, "#CCCCCC"], [0.5, "#FFAAAA"], [1.0, "#FF4444"], ] for col in direction_colors: if col[0] >= dir: return col[1]
[docs] def compare_element_usage_two_logs( net: PetriNet, im: Marking, fm: Marking, log1: Union[EventLog, pd.DataFrame], log2: Union[EventLog, pd.DataFrame], parameters: Optional[Dict[Any, Any]] = None, ) -> Dict[Any, Any]: """ Returns some statistics (also visual) about the comparison of the usage of the elements in two logs given an accepting Petri net Parameters ------------- net Petri net im Initial marking fm Final marking log1 First log log2 Second log parameters Parameters of the algorithm (to be passed to the token-based replay) Returns ---------------- aggregated_statistics Statistics about the usage of places, transitions and arcs in the net """ if parameters is None: parameters = {} log1 = log_converter.apply( log1, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters, ) log2 = log_converter.apply( log2, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters, ) tr_parameters = copy(parameters) tr_parameters[ tr_algorithm.Variants.TOKEN_REPLAY.value.Parameters.ENABLE_PLTR_FITNESS ] = True rep_traces1, pl_fit_trace1, tr_fit_trace1, ne_act_model1 = ( tr_algorithm.apply(log1, net, im, fm, parameters=tr_parameters) ) rep_traces2, pl_fit_trace2, tr_fit_trace2, ne_act_model2 = ( tr_algorithm.apply(log2, net, im, fm, parameters=tr_parameters) ) tr_occ1 = Counter( [y for x in rep_traces1 for y in x["activated_transitions"]] ) tr_occ2 = Counter( [y for x in rep_traces2 for y in x["activated_transitions"]] ) pl_occ1 = Counter( { p: pl_fit_trace1[p]["c"] + pl_fit_trace1[p]["r"] for p in pl_fit_trace1 } ) pl_occ2 = Counter( { p: pl_fit_trace2[p]["c"] + pl_fit_trace2[p]["r"] for p in pl_fit_trace2 } ) all_replayed_transitions = set(tr_occ1.keys()).union(set(tr_occ2.keys())) all_replayed_places = set(pl_occ1.keys()).union(set(pl_occ2.keys())) all_transitions = all_replayed_transitions.union(set(net.transitions)) all_places = all_replayed_places.union(set(net.places)) aggregated_statistics = {} for place in all_places: aggregated_statistics[place] = { "log1_occ": pl_occ1[place], "log2_occ": pl_occ2[place], "total_occ": pl_occ1[place] + pl_occ2[place], } aggregated_statistics[place]["label"] = "(%d/%d/%d)" % ( pl_occ1[place], pl_occ2[place], pl_occ1[place] + pl_occ2[place], ) dir = ( (pl_occ2[place] - pl_occ1[place]) / (pl_occ1[place] + pl_occ2[place]) if (pl_occ1[place] + pl_occ2[place]) > 0 else 0 ) aggregated_statistics[place]["direction"] = dir aggregated_statistics[place]["color"] = ( give_color_to_direction_dynamic(dir) ) for trans in all_transitions: aggregated_statistics[trans] = { "log1_occ": tr_occ1[trans], "log2_occ": tr_occ2[trans], "total_occ": tr_occ1[trans] + tr_occ2[trans], } if trans.label is not None: aggregated_statistics[trans]["label"] = trans.label + " " else: aggregated_statistics[trans]["label"] = "" aggregated_statistics[trans]["label"] = aggregated_statistics[trans][ "label" ] + "(%d/%d/%d)" % ( tr_occ1[trans], tr_occ2[trans], tr_occ1[trans] + tr_occ2[trans], ) dir = ( (tr_occ2[trans] - tr_occ1[trans]) / (tr_occ1[trans] + tr_occ2[trans]) if (tr_occ1[trans] + tr_occ2[trans]) > 0 else 0 ) aggregated_statistics[trans]["direction"] = dir aggregated_statistics[trans]["color"] = ( give_color_to_direction_dynamic(dir) ) for arc in trans.in_arcs: aggregated_statistics[arc] = aggregated_statistics[trans] for arc in trans.out_arcs: aggregated_statistics[arc] = aggregated_statistics[trans] return aggregated_statistics