Source code for pm4py.algo.conformance.declare.algorithm
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import exec_utils
from enum import Enum
from pm4py.algo.conformance.declare.variants import classic
from pm4py.objects.log.obj import EventLog
import pandas as pd
from typing import Union, Dict, Optional, Any, List
[docs]
class Variants(Enum):
CLASSIC = classic
[docs]
def apply(
log: Union[EventLog, pd.DataFrame],
model: Dict[str, Dict[Any, Dict[str, int]]],
variant=Variants.CLASSIC,
parameters: Optional[Dict[Any, Any]] = None,
) -> List[Dict[str, Any]]:
"""
Applies conformance checking against a DECLARE model.
Parameters
--------------
log
Event log / Pandas dataframe
model
DECLARE model
variant
Variant to be used:
- Variants.CLASSIC
parameters
Variant-specific parameters
Returns
-------------
lst_conf_res
List containing for every case a dictionary with different keys:
- no_constr_total => the total number of constraints of the DECLARE model
- deviations => a list of deviations
- no_dev_total => the total number of deviations
- dev_fitness => the fitness (1 - no_dev_total / no_constr_total)
- is_fit => True if the case is perfectly fit
"""
return exec_utils.get_variant(variant).apply(log, model, parameters)
[docs]
def get_diagnostics_dataframe(
log, conf_result, variant=Variants.CLASSIC, parameters=None
) -> pd.DataFrame:
"""
Gets the diagnostics dataframe from a log and the results
of DECLARE-based conformance checking
Parameters
--------------
log
Event log
conf_result
Results of conformance checking
variant
Variant to be used:
- Variants.CLASSIC
parameters
Variant-specific parameters
Returns
--------------
diagn_dataframe
Diagnostics dataframe
"""
return exec_utils.get_variant(variant).get_diagnostics_dataframe(
log, conf_result, parameters
)