Source code for pm4py.algo.conformance.footprints.variants.log_model

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import exec_utils, xes_constants, constants, pandas_utils
from typing import Optional, Dict, Any, Union, List
from pm4py.objects.log.obj import EventLog
import pandas as pd

from enum import Enum


[docs] class Outputs(Enum): DFG = "dfg" SEQUENCE = "sequence" PARALLEL = "parallel" START_ACTIVITIES = "start_activities" END_ACTIVITIES = "end_activities" ACTIVITIES = "activities" SKIPPABLE = "skippable" ACTIVITIES_ALWAYS_HAPPENING = "activities_always_happening" MIN_TRACE_LENGTH = "min_trace_length" TRACE = "trace"
[docs] class Parameters(Enum): CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY STRICT = "strict"
[docs] def apply_single( log_footprints: Dict[str, Any], model_footprints: Dict[str, Any], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Dict[str, Any]: """ Apply footprints conformance between a log footprints object and a model footprints object Parameters ----------------- log_footprints Footprints of the log (NOT a list, but a single footprints object) model_footprints Footprints of the model parameters Parameters of the algorithm, including: - Parameters.STRICT => strict check of the footprints Returns ------------------ violations Set of all the violations between the log footprints and the model footprints """ if parameters is None: parameters = {} strict = exec_utils.get_param_value(Parameters.STRICT, parameters, False) if strict: s1 = log_footprints[Outputs.SEQUENCE.value].difference( model_footprints[Outputs.SEQUENCE.value] ) s2 = log_footprints[Outputs.PARALLEL.value].difference( model_footprints[Outputs.PARALLEL.value] ) violations = s1.union(s2) else: s1 = log_footprints[Outputs.SEQUENCE.value].union( log_footprints[Outputs.PARALLEL.value] ) s2 = model_footprints[Outputs.SEQUENCE.value].union( model_footprints[Outputs.PARALLEL.value] ) violations = s1.difference(s2) return violations
[docs] def apply( log_footprints: Union[Dict[str, Any], List[Dict[str, Any]]], model_footprints: Dict[str, Any], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> Union[List[Dict[str, Any]], Dict[str, Any]]: """ Apply footprints conformance between a log footprints object and a model footprints object Parameters ----------------- log_footprints Footprints of the log model_footprints Footprints of the model parameters Parameters of the algorithm, including: - Parameters.STRICT => strict check of the footprints Returns ------------------ violations Set of all the violations between the log footprints and the model footprints, OR list of case-per-case violations """ if type(log_footprints) is list: ret = [] for case_footprints in log_footprints: ret.append( apply_single( case_footprints, model_footprints, parameters=parameters ) ) return ret return apply_single( log_footprints, model_footprints, parameters=parameters )
[docs] def get_diagnostics_dataframe( log: EventLog, conf_result: Union[List[Dict[str, Any]], Dict[str, Any]], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> pd.DataFrame: """ Gets the diagnostics dataframe from the log and the results of footprints conformance checking (trace-by-trace) Parameters -------------- log Event log conf_result Conformance checking results (trace-by-trace) Returns -------------- diagn_dataframe Diagnostics dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY ) import pandas as pd diagn_stream = [] for index in range(len(log)): case_id = log[index].attributes[case_id_key] num_violations = len(conf_result[index]) is_fit = num_violations == 0 diagn_stream.append( { "case_id": case_id, "num_violations": num_violations, "is_fit": is_fit, } ) return pandas_utils.instantiate_dataframe(diagn_stream)