'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import exec_utils, xes_constants, constants, pandas_utils
from typing import Optional, Dict, Any, Union, List
from pm4py.objects.log.obj import EventLog
import pandas as pd
from enum import Enum
[docs]
class Outputs(Enum):
DFG = "dfg"
SEQUENCE = "sequence"
PARALLEL = "parallel"
START_ACTIVITIES = "start_activities"
END_ACTIVITIES = "end_activities"
ACTIVITIES = "activities"
SKIPPABLE = "skippable"
ACTIVITIES_ALWAYS_HAPPENING = "activities_always_happening"
MIN_TRACE_LENGTH = "min_trace_length"
TRACE = "trace"
[docs]
class Parameters(Enum):
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
STRICT = "strict"
[docs]
def apply_single(
log_footprints: Dict[str, Any],
model_footprints: Dict[str, Any],
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> Dict[str, Any]:
"""
Apply footprints conformance between a log footprints object
and a model footprints object
Parameters
-----------------
log_footprints
Footprints of the log (NOT a list, but a single footprints object)
model_footprints
Footprints of the model
parameters
Parameters of the algorithm, including:
- Parameters.STRICT => strict check of the footprints
Returns
------------------
violations
Set of all the violations between the log footprints
and the model footprints
"""
if parameters is None:
parameters = {}
strict = exec_utils.get_param_value(Parameters.STRICT, parameters, False)
if strict:
s1 = log_footprints[Outputs.SEQUENCE.value].difference(
model_footprints[Outputs.SEQUENCE.value]
)
s2 = log_footprints[Outputs.PARALLEL.value].difference(
model_footprints[Outputs.PARALLEL.value]
)
violations = s1.union(s2)
else:
s1 = log_footprints[Outputs.SEQUENCE.value].union(
log_footprints[Outputs.PARALLEL.value]
)
s2 = model_footprints[Outputs.SEQUENCE.value].union(
model_footprints[Outputs.PARALLEL.value]
)
violations = s1.difference(s2)
return violations
[docs]
def apply(
log_footprints: Union[Dict[str, Any], List[Dict[str, Any]]],
model_footprints: Dict[str, Any],
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> Union[List[Dict[str, Any]], Dict[str, Any]]:
"""
Apply footprints conformance between a log footprints object
and a model footprints object
Parameters
-----------------
log_footprints
Footprints of the log
model_footprints
Footprints of the model
parameters
Parameters of the algorithm, including:
- Parameters.STRICT => strict check of the footprints
Returns
------------------
violations
Set of all the violations between the log footprints
and the model footprints, OR list of case-per-case violations
"""
if type(log_footprints) is list:
ret = []
for case_footprints in log_footprints:
ret.append(
apply_single(
case_footprints, model_footprints, parameters=parameters
)
)
return ret
return apply_single(
log_footprints, model_footprints, parameters=parameters
)
[docs]
def get_diagnostics_dataframe(
log: EventLog,
conf_result: Union[List[Dict[str, Any]], Dict[str, Any]],
parameters: Optional[Dict[Union[str, Parameters], Any]] = None,
) -> pd.DataFrame:
"""
Gets the diagnostics dataframe from the log
and the results of footprints conformance checking
(trace-by-trace)
Parameters
--------------
log
Event log
conf_result
Conformance checking results (trace-by-trace)
Returns
--------------
diagn_dataframe
Diagnostics dataframe
"""
if parameters is None:
parameters = {}
case_id_key = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY
)
import pandas as pd
diagn_stream = []
for index in range(len(log)):
case_id = log[index].attributes[case_id_key]
num_violations = len(conf_result[index])
is_fit = num_violations == 0
diagn_stream.append(
{
"case_id": case_id,
"num_violations": num_violations,
"is_fit": is_fit,
}
)
return pandas_utils.instantiate_dataframe(diagn_stream)