Source code for pm4py.algo.conformance.temporal_profile.variants.dataframe

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import sys
from enum import Enum
from typing import Optional, Dict, Any

import pandas as pd

from pm4py.algo.discovery.dfg.adapters.pandas.df_statistics import (
    get_partial_order_dataframe,
)
from pm4py.util import exec_utils, constants, xes_constants, pandas_utils
from pm4py.util import typing


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ZETA = "zeta" BUSINESS_HOURS = "business_hours" BUSINESS_HOUR_SLOTS = "business_hour_slots" WORKCALENDAR = "workcalendar"
[docs] def apply( df: pd.DataFrame, temporal_profile: typing.TemporalProfile, parameters: Optional[Dict[Any, Any]] = None, ) -> typing.TemporalProfileConformanceResults: """ Checks the conformance of the dataframe using the provided temporal profile. Implements the approach described in: Stertz, Florian, Jürgen Mangler, and Stefanie Rinderle-Ma. "Temporal Conformance Checking at Runtime based on Time-infused Process Models." arXiv preprint arXiv:2008.07262 (2020). Parameters --------------- df Pandas dataframe temporal_profile Temporal profile parameters Parameters of the algorithm, including: - Parameters.ACTIVITY_KEY => the attribute to use as activity - Parameters.START_TIMESTAMP_KEY => the attribute to use as start timestamp - Parameters.TIMESTAMP_KEY => the attribute to use as timestamp - Parameters.ZETA => multiplier for the standard deviation - Parameters.CASE_ID_KEY => column to use as case identifier Returns --------------- list_dev A list containing, for each case, all the deviations. Each deviation is a tuple with four elements: - 1) The source activity of the recorded deviation - 2) The target activity of the recorded deviation - 3) The time passed between the occurrence of the source activity and the target activity - 4) The value of (time passed - mean)/std for this occurrence (zeta). """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) start_timestamp_key = exec_utils.get_param_value( Parameters.START_TIMESTAMP_KEY, parameters, None ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) zeta = exec_utils.get_param_value(Parameters.ZETA, parameters, 6.0) business_hours = exec_utils.get_param_value( Parameters.BUSINESS_HOURS, parameters, False ) business_hours_slots = exec_utils.get_param_value( Parameters.BUSINESS_HOUR_SLOTS, parameters, constants.DEFAULT_BUSINESS_HOUR_SLOTS, ) workcalendar = exec_utils.get_param_value( Parameters.WORKCALENDAR, parameters, constants.DEFAULT_BUSINESS_HOURS_WORKCALENDAR, ) temporal_profile = pandas_utils.instantiate_dataframe( [ { activity_key: x[0], activity_key + "_2": x[1], "@@min": y[0] - zeta * y[1], "@@max": y[0] + zeta * y[1], "@@mean": y[0], "@@std": y[1], } for x, y in temporal_profile.items() ] ) cases = pandas_utils.format_unique(df[case_id_key].unique()) ret = [[] for c in cases] efg = get_partial_order_dataframe( df, activity_key=activity_key, timestamp_key=timestamp_key, start_timestamp_key=start_timestamp_key, case_id_glue=case_id_key, keep_first_following=False, business_hours=business_hours, business_hours_slot=business_hours_slots, workcalendar=workcalendar, ) efg = efg[[case_id_key, activity_key, activity_key + "_2", "@@flow_time"]] efg = efg.merge(temporal_profile, on=[activity_key, activity_key + "_2"]) efg = efg[ (efg["@@flow_time"] < efg["@@min"]) | (efg["@@flow_time"] > efg["@@max"]) ][ [ case_id_key, activity_key, activity_key + "_2", "@@flow_time", "@@mean", "@@std", ] ].to_dict( "records" ) for el in efg: this_zeta = ( abs(el["@@flow_time"] - el["@@mean"]) / el["@@std"] if el["@@std"] > 0 else sys.maxsize ) ret[cases.index(el[case_id_key])].append( ( el[activity_key], el[activity_key + "_2"], el["@@flow_time"], this_zeta, ) ) return ret