Source code for pm4py.algo.conformance.tokenreplay.algorithm
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.conformance.tokenreplay.variants import token_replay, backwards
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.util import typing
[docs]
class Variants(Enum):
TOKEN_REPLAY = token_replay
BACKWARDS = backwards
VERSIONS = {Variants.TOKEN_REPLAY, Variants.BACKWARDS}
DEFAULT_VARIANT = Variants.TOKEN_REPLAY
[docs]
def apply(
log: Union[EventLog, EventStream, pd.DataFrame],
net: PetriNet,
initial_marking: Marking,
final_marking: Marking,
parameters: Optional[Dict[Any, Any]] = None,
variant=DEFAULT_VARIANT,
) -> typing.ListAlignments:
"""
Method to apply token-based replay
Parameters
-----------
log
Log
net
Petri net
initial_marking
Initial marking
final_marking
Final marking
parameters
Parameters of the algorithm, including:
Parameters.ACTIVITY_KEY -> Activity key
variant
Variant of the algorithm to use:
- Variants.TOKEN_REPLAY
- Variants.BACKWARDS
"""
if parameters is None:
parameters = {}
return exec_utils.get_variant(variant).apply(
log, net, initial_marking, final_marking, parameters=parameters
)
[docs]
def get_diagnostics_dataframe(
log: Union[EventLog, EventStream, pd.DataFrame],
tbr_output: typing.ListAlignments,
variant=DEFAULT_VARIANT,
parameters: Optional[Dict[Any, Any]] = None,
) -> pd.DataFrame:
"""
Gets the results of token-based replay in a dataframe
Parameters
--------------
log
Event log
tbr_output
Output of the token-based replay technique
variant
Variant of the algorithm to use:
- Variants.TOKEN_REPLAY
- Variants.BACKWARDS
Returns
--------------
dataframe
Diagnostics dataframe
"""
if parameters is None:
parameters = {}
return exec_utils.get_variant(variant).get_diagnostics_dataframe(
log, tbr_output, parameters=parameters
)