Source code for pm4py.algo.conformance.tokenreplay.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.algo.conformance.tokenreplay.variants import token_replay, backwards
from enum import Enum
from pm4py.util import exec_utils
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.util import typing


[docs] class Variants(Enum): TOKEN_REPLAY = token_replay BACKWARDS = backwards
VERSIONS = {Variants.TOKEN_REPLAY, Variants.BACKWARDS} DEFAULT_VARIANT = Variants.TOKEN_REPLAY
[docs] def apply( log: Union[EventLog, EventStream, pd.DataFrame], net: PetriNet, initial_marking: Marking, final_marking: Marking, parameters: Optional[Dict[Any, Any]] = None, variant=DEFAULT_VARIANT, ) -> typing.ListAlignments: """ Method to apply token-based replay Parameters ----------- log Log net Petri net initial_marking Initial marking final_marking Final marking parameters Parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> Activity key variant Variant of the algorithm to use: - Variants.TOKEN_REPLAY - Variants.BACKWARDS """ if parameters is None: parameters = {} return exec_utils.get_variant(variant).apply( log, net, initial_marking, final_marking, parameters=parameters )
[docs] def get_diagnostics_dataframe( log: Union[EventLog, EventStream, pd.DataFrame], tbr_output: typing.ListAlignments, variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None, ) -> pd.DataFrame: """ Gets the results of token-based replay in a dataframe Parameters -------------- log Event log tbr_output Output of the token-based replay technique variant Variant of the algorithm to use: - Variants.TOKEN_REPLAY - Variants.BACKWARDS Returns -------------- dataframe Diagnostics dataframe """ if parameters is None: parameters = {} return exec_utils.get_variant(variant).get_diagnostics_dataframe( log, tbr_output, parameters=parameters )