Source code for pm4py.algo.connectors.variants.camunda_workflow
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from typing import Optional, Dict, Any
from enum import Enum
from pm4py.util import exec_utils, pandas_utils
import pandas as pd
[docs]
class Parameters(Enum):
CONNECTION_STRING = "connection_string"
[docs]
def apply(conn, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame:
"""
Extracts an event log from the Camunda workflow system
Parameters
---------------
conn
(if provided) ODBC connection object to the database (offering cursors)
parameters
Parameters of the algorithm, including:
- Parameters.CONNECTION_STRING => connection string that is used (if no connection is provided)
Returns
---------------
dataframe
Pandas dataframe
"""
if parameters is None:
parameters = {}
import pm4py
connection_string = exec_utils.get_param_value(
Parameters.CONNECTION_STRING, parameters, None
)
if conn is None:
import pyodbc
conn = pyodbc.connect(connection_string)
curs = conn.cursor()
query = """
SELECT
pi.PROC_DEF_KEY_ AS "processID",
ai.EXECUTION_ID_ AS "case:concept:name",
ai.ACT_NAME_ AS "concept:name",
ai.START_TIME_ AS "time:timestamp",
ai.ASSIGNEE_ AS "org:resource"
FROM
act_hi_procinst pi
JOIN
act_hi_actinst ai ON pi.PROC_INST_ID_ = ai.PROC_INST_ID_
ORDER BY
pi.PROC_INST_ID_,
ai.EXECUTION_ID_,
ai.START_TIME_;
"""
columns = [
"processID",
"case:concept:name",
"concept:name",
"time:timestamp",
"org:resource",
]
curs.execute(query)
dataframe = curs.fetchall()
dataframe = pandas_utils.instantiate_dataframe_from_records(
dataframe, columns=columns
)
dataframe = pm4py.format_dataframe(dataframe)
curs.close()
conn.close()
return dataframe