Source code for pm4py.algo.connectors.variants.camunda_workflow

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or 
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from typing import Optional, Dict, Any
from enum import Enum
from pm4py.util import exec_utils, pandas_utils
import pandas as pd


[docs] class Parameters(Enum): CONNECTION_STRING = "connection_string"
[docs] def apply(conn, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame: """ Extracts an event log from the Camunda workflow system Parameters --------------- conn (if provided) ODBC connection object to the database (offering cursors) parameters Parameters of the algorithm, including: - Parameters.CONNECTION_STRING => connection string that is used (if no connection is provided) Returns --------------- dataframe Pandas dataframe """ if parameters is None: parameters = {} import pm4py connection_string = exec_utils.get_param_value( Parameters.CONNECTION_STRING, parameters, None ) if conn is None: import pyodbc conn = pyodbc.connect(connection_string) curs = conn.cursor() query = """ SELECT pi.PROC_DEF_KEY_ AS "processID", ai.EXECUTION_ID_ AS "case:concept:name", ai.ACT_NAME_ AS "concept:name", ai.START_TIME_ AS "time:timestamp", ai.ASSIGNEE_ AS "org:resource" FROM act_hi_procinst pi JOIN act_hi_actinst ai ON pi.PROC_INST_ID_ = ai.PROC_INST_ID_ ORDER BY pi.PROC_INST_ID_, ai.EXECUTION_ID_, ai.START_TIME_; """ columns = [ "processID", "case:concept:name", "concept:name", "time:timestamp", "org:resource", ] curs.execute(query) dataframe = curs.fetchall() dataframe = pandas_utils.instantiate_dataframe_from_records( dataframe, columns=columns ) dataframe = pm4py.format_dataframe(dataframe) curs.close() conn.close() return dataframe