Source code for pm4py.algo.connectors.variants.chrome_history

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

import os
import sqlite3
from datetime import datetime
import pandas as pd
from enum import Enum
from typing import Optional, Dict, Any
from pm4py.util import exec_utils, pandas_utils


[docs] class Parameters(Enum): HISTORY_DB_PATH = "history_db_path"
[docs] def apply(parameters: Optional[Dict[Any, str]] = None) -> pd.DataFrame: """ Extracts a dataframe containing the navigation history of Google Chrome. Please keep Google Chrome history closed when extracting. CASE ID (case:concept:name) => an identifier of the profile that has been extracted ACTIVITY (concept:name) => the complete path of the website, minus the GET arguments TIMESTAMP (time:timestamp) => the timestamp of visit Parameters -------------- Parameters.HISTORY_DB_PATH Path to the history DB path of Google Chrome (default: position of the Windows folder) Returns -------------- dataframe Pandas dataframe """ if parameters is None: parameters = {} history_db_path = exec_utils.get_param_value( Parameters.HISTORY_DB_PATH, parameters, "C:\\Users\\" + os.getenv("USERNAME") + "\\AppData\\Local\\Google\\Chrome\\User Data", ) print(history_db_path) if os.path.isdir(history_db_path): profiles = [ (os.path.join(history_db_path, x, "History"), x) for x in os.listdir(history_db_path) if x.startswith("Profile ") ] else: profiles = [(history_db_path, "DEFAULT")] profiles = [x for x in profiles if os.path.exists(x[0])] events = [] for prof in profiles: conn = sqlite3.connect(prof[0]) curs = conn.cursor() curs.execute( "SELECT b.url, datetime(a.visit_time / 1000000 + (strftime('%s', '1601-01-01')), 'unixepoch', 'localtime') FROM (SELECT url, visit_time FROM visits) a JOIN (SELECT id, url FROM urls) b ON a.url = b.id" ) res = curs.fetchall() for r in res: ev = { "case:concept:name": prof[1], "concept:name": r[0] .split("//")[-1] .split("?")[0] .replace(",", ""), "complete_url": r[0], "domain": r[0].split("//")[-1].split("/")[0], "url_wo_parameters": r[0].split("//")[-1].split("?")[0], "time:timestamp": datetime.strptime(r[1], "%Y-%m-%d %H:%M:%S"), } if ( len(ev["case:concept:name"].strip()) > 0 and len(ev["concept:name"].strip()) > 0 ): events.append(ev) curs.close() conn.close() dataframe = pandas_utils.instantiate_dataframe(events) if len(dataframe) > 0: dataframe = pandas_utils.insert_index( dataframe, "@@index", copy_dataframe=False, reset_index=False ) dataframe = dataframe.sort_values(["time:timestamp", "@@index"]) dataframe["@@case_index"] = dataframe.groupby( "case:concept:name", sort=False ).ngroup() dataframe = dataframe.sort_values( ["@@case_index", "time:timestamp", "@@index"] ) return dataframe