Source code for pm4py.algo.connectors.variants.firefox_history
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import os
import sqlite3
from datetime import datetime
import pandas as pd
from enum import Enum
from typing import Optional, Dict, Any
from pm4py.util.dt_parsing.variants import strpfromiso
from pm4py.util import exec_utils, pandas_utils
[docs]
class Parameters(Enum):
HISTORY_DB_PATH = "history_db_path"
[docs]
def apply(parameters: Optional[Dict[Any, str]] = None) -> pd.DataFrame:
"""
Extracts a dataframe containing the navigation history of Mozilla Firefox.
Please keep Google Mozilla Firefox closed when extracting.
CASE ID (case:concept:name) => an identifier of the profile that has been extracted
ACTIVITY (concept:name) => the complete path of the website, minus the GET arguments
TIMESTAMP (time:timestamp) => the timestamp of visit
Parameters
--------------
Parameters.HISTORY_DB_PATH
Path to the history DB path of Mozilla Firefox (default: position of the Windows folder)
Returns
--------------
dataframe
Pandas dataframe
"""
if parameters is None:
parameters = {}
history_db_path = exec_utils.get_param_value(
Parameters.HISTORY_DB_PATH,
parameters,
"C:\\Users\\"
+ os.getenv("USERNAME")
+ "\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles",
)
print(history_db_path)
if os.path.isdir(history_db_path):
profiles = [
(os.path.join(history_db_path, x, "places.sqlite"), x)
for x in os.listdir(history_db_path)
]
else:
profiles = [(history_db_path, "DEFAULT")]
profiles = [x for x in profiles if os.path.exists(x[0])]
events = []
for prof in profiles:
if os.path.exists(prof[0]):
conn = sqlite3.connect(prof[0])
curs = conn.cursor()
curs.execute(
"SELECT b.url, a.visit_date FROM (SELECT id, visit_date FROM moz_historyvisits) a JOIN (SELECT id, url FROM moz_places) b ON a.id = b.id"
)
res = curs.fetchall()
for r in res:
ev = {
"case:concept:name": prof[1],
"concept:name": r[0]
.split("//")[-1]
.split("?")[0]
.replace(",", ""),
"complete_url": r[0],
"domain": r[0].split("//")[-1].split("/")[0],
"url_wo_parameters": r[0].split("//")[-1].split("?")[0],
"time:timestamp": strpfromiso.fix_naivety(
datetime.fromtimestamp(r[1] / 10**6)
),
}
if (
len(ev["case:concept:name"].strip()) > 0
and len(ev["concept:name"].strip()) > 0
):
events.append(ev)
curs.close()
conn.close()
dataframe = pandas_utils.instantiate_dataframe(events)
if len(dataframe) > 0:
dataframe = pandas_utils.insert_index(
dataframe, "@@index", copy_dataframe=False, reset_index=False
)
dataframe = dataframe.sort_values(["time:timestamp", "@@index"])
dataframe["@@case_index"] = dataframe.groupby(
"case:concept:name", sort=False
).ngroup()
dataframe = dataframe.sort_values(
["@@case_index", "time:timestamp", "@@index"]
)
return dataframe