Source code for pm4py.algo.discovery.alpha.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py import util as pmutil
from pm4py.algo.discovery.alpha import variants
from pm4py.algo.discovery.dfg.adapters.pandas import df_statistics
from pm4py.statistics.start_activities.pandas import (
    get as start_activities_get,
)
from pm4py.statistics.end_activities.pandas import get as end_activities_get
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.util import exec_utils
from pm4py.util import xes_constants as xes_util
from pm4py.util import constants, pandas_utils
from enum import Enum
from typing import Optional, Dict, Any, Union, Tuple
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from pm4py.objects.petri_net.obj import PetriNet, Marking


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
[docs] class Variants(Enum): ALPHA_VERSION_CLASSIC = variants.classic ALPHA_VERSION_PLUS = variants.plus
ALPHA_VERSION_CLASSIC = Variants.ALPHA_VERSION_CLASSIC ALPHA_VERSION_PLUS = Variants.ALPHA_VERSION_PLUS DEFAULT_VARIANT = ALPHA_VERSION_CLASSIC VERSIONS = {Variants.ALPHA_VERSION_CLASSIC, Variants.ALPHA_VERSION_PLUS}
[docs] def apply( log: Union[EventLog, EventStream, pd.DataFrame], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, variant=DEFAULT_VARIANT, ) -> Tuple[PetriNet, Marking, Marking]: """ Apply the Alpha Miner on top of a log Parameters ----------- log Log variant Variant of the algorithm to use: - Variants.ALPHA_VERSION_CLASSIC - Variants.ALPHA_VERSION_PLUS parameters Possible parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> Name of the attribute that contains the activity Returns ----------- net Petri net marking Initial marking final_marking Final marking """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, pmutil.constants.CASE_CONCEPT_NAME ) activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_util.DEFAULT_NAME_KEY ) start_timestamp_key = exec_utils.get_param_value( Parameters.START_TIMESTAMP_KEY, parameters, None ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_util.DEFAULT_TIMESTAMP_KEY ) if ( pandas_utils.check_is_pandas_dataframe(log) and variant == ALPHA_VERSION_CLASSIC ): dfg = df_statistics.get_dfg_graph( log, case_id_glue=case_id_glue, activity_key=activity_key, timestamp_key=timestamp_key, start_timestamp_key=start_timestamp_key, ) start_activities = start_activities_get.get_start_activities( log, parameters=parameters ) end_activities = end_activities_get.get_end_activities( log, parameters=parameters ) return exec_utils.get_variant(variant).apply_dfg_sa_ea( dfg, start_activities, end_activities, parameters=parameters ) return exec_utils.get_variant(variant).apply( log_conversion.apply(log, parameters, log_conversion.TO_EVENT_LOG), parameters, )
[docs] def apply_dfg( dfg: Dict[Tuple[str, str], int], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, variant=ALPHA_VERSION_CLASSIC, ) -> Tuple[PetriNet, Marking, Marking]: """ Apply Alpha Miner directly on top of a DFG graph Parameters ----------- dfg Directly-Follows graph variant Variant of the algorithm to use (classic) parameters Possible parameters of the algorithm, including: activity key -> Name of the attribute that contains the activity Returns ----------- net Petri net marking Initial marking final_marking Final marking """ if parameters is None: parameters = {} return exec_utils.get_variant(variant).apply_dfg(dfg, parameters)