Source code for pm4py.algo.discovery.batches.variants.pandas

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from typing import Optional, Dict, Any, List, Tuple, Union

import pandas as pd

from pm4py.algo.discovery.batches.utils import detection
from pm4py.util import exec_utils, constants, xes_constants, pandas_utils
import numpy as np


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY RESOURCE_KEY = constants.PARAMETER_CONSTANT_RESOURCE_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY EVENT_ID_KEY = "event_id_key" MERGE_DISTANCE = "merge_distance" MIN_BATCH_SIZE = "min_batch_size"
[docs] def apply( log: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> List[Tuple[Tuple[str, str], int, Dict[str, Any]]]: """ Provided a Pandas dataframe, returns a list having as elements the activity-resources with the batches that are detected, divided in: - Simultaneous (all the events in the batch have identical start and end timestamps) - Batching at start (all the events in the batch have identical start timestamp) - Batching at end (all the events in the batch have identical end timestamp) - Sequential batching (for all the consecutive events, the end of the first is equal to the start of the second) - Concurrent batching (for all the consecutive events that are not sequentially matched) The approach has been described in the following paper: Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., & Vanhoof, K. (2015, December). Batch Processing: Definition and Event Log Identification. In SIMPDA (pp. 137-140). Parameters ------------------- log Dataframe parameters Parameters of the algorithm: - ACTIVITY_KEY => the attribute that should be used as activity - RESOURCE_KEY => the attribute that should be used as resource - START_TIMESTAMP_KEY => the attribute that should be used as start timestamp - TIMESTAMP_KEY => the attribute that should be used as timestamp - CASE_ID_KEY => the attribute that should be used as case identifier - MERGE_DISTANCE => the maximum time distance between non-overlapping intervals in order for them to be considered belonging to the same batch (default: 15*60 15 minutes) - MIN_BATCH_SIZE => the minimum number of events for a batch to be considered (default: 2) Returns ------------------ list_batches A (sorted) list containing tuples. Each tuple contain: - Index 0: the activity-resource for which at least one batch has been detected - Index 1: the number of batches for the given activity-resource - Index 2: a list containing all the batches. Each batch is described by: # The start timestamp of the batch # The complete timestamp of the batch # The list of events that are executed in the batch """ if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY ) resource_key = exec_utils.get_param_value( Parameters.RESOURCE_KEY, parameters, xes_constants.DEFAULT_RESOURCE_KEY ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY, ) start_timestamp_key = exec_utils.get_param_value( Parameters.START_TIMESTAMP_KEY, parameters, timestamp_key ) case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME ) event_id_key = exec_utils.get_param_value( Parameters.EVENT_ID_KEY, parameters, constants.DEFAULT_INDEX_KEY ) attributes_to_consider = { activity_key, resource_key, start_timestamp_key, timestamp_key, case_id_key, } log_contains_evidkey = event_id_key in log if log_contains_evidkey: attributes_to_consider.add(event_id_key) log = log[list(attributes_to_consider)] # the timestamp columns are expressed in nanoseconds values # here, we want them to have the second granularity, so we divide by 10**9 # for example 1001000000 nanoseconds (value stored in the column) # is equivalent to 1,001 seconds. log[timestamp_key] = pandas_utils.convert_to_seconds(log[timestamp_key]) if start_timestamp_key != timestamp_key: # see the aforementioned explanation. log[start_timestamp_key] = pandas_utils.convert_to_seconds( log[start_timestamp_key] ) actres_grouping0 = ( log.groupby([activity_key, resource_key]).agg(list).to_dict() ) start_timestamps = actres_grouping0[start_timestamp_key] complete_timestamps = actres_grouping0[timestamp_key] cases = actres_grouping0[case_id_key] if log_contains_evidkey: events_ids = actres_grouping0[event_id_key] actres_grouping = {} for k in start_timestamps: st = start_timestamps[k] et = complete_timestamps[k] c = cases[k] if log_contains_evidkey: eid = events_ids[k] actres_grouping_k = [] for i in range(len(st)): if log_contains_evidkey: actres_grouping_k.append((st[i], et[i], c[i], eid[i])) else: actres_grouping_k.append((st[i], et[i], c[i])) actres_grouping[k] = actres_grouping_k return detection.detect(actres_grouping, parameters=parameters)