Source code for pm4py.algo.discovery.dfg.adapters.pandas.freq_triples

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import constants, pandas_utils


[docs] def get_freq_triples( df, activity_key="concept:name", case_id_glue="case:concept:name", timestamp_key="time:timestamp", sort_caseid_required=True, sort_timestamp_along_case_id=True, ): """ Gets the frequency triples out of a dataframe Parameters ------------ df Dataframe activity_key Activity key case_id_glue Case ID glue timestamp_key Timestamp key sort_caseid_required Determine if sort by case ID is required (default: True) sort_timestamp_along_case_id Determine if sort by timestamp is required (default: True) Returns ------------- freq_triples Frequency triples from the dataframe """ import pandas as pd if sort_caseid_required: if sort_timestamp_along_case_id: df = df.sort_values([case_id_glue, timestamp_key]) else: df = df.sort_values(case_id_glue) df_reduced = df[[case_id_glue, activity_key]] # shift the dataframe by 1 df_reduced_1 = df_reduced.shift(-1) # shift the dataframe by 2 df_reduced_2 = df_reduced.shift(-2) # change column names to shifted dataframe df_reduced_1.columns = [str(col) + "_2" for col in df_reduced_1.columns] df_reduced_2.columns = [str(col) + "_3" for col in df_reduced_2.columns] df_successive_rows = pandas_utils.concat( [df_reduced, df_reduced_1, df_reduced_2], axis=1 ) df_successive_rows = df_successive_rows[ df_successive_rows[case_id_glue] == df_successive_rows[case_id_glue + "_2"] ] df_successive_rows = df_successive_rows[ df_successive_rows[case_id_glue] == df_successive_rows[case_id_glue + "_3"] ] all_columns = set(df_successive_rows.columns) all_columns = list( all_columns - set([activity_key, activity_key + "_2", activity_key + "_3"]) ) directly_follows_grouping = df_successive_rows.groupby( [activity_key, activity_key + "_2", activity_key + "_3"] ) if all_columns: directly_follows_grouping = directly_follows_grouping[all_columns[0]] freq_triples = directly_follows_grouping.size().to_dict() return freq_triples