Source code for pm4py.algo.discovery.dfg.adapters.pandas.freq_triples
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from pm4py.util import constants, pandas_utils
[docs]
def get_freq_triples(
df,
activity_key="concept:name",
case_id_glue="case:concept:name",
timestamp_key="time:timestamp",
sort_caseid_required=True,
sort_timestamp_along_case_id=True,
):
"""
Gets the frequency triples out of a dataframe
Parameters
------------
df
Dataframe
activity_key
Activity key
case_id_glue
Case ID glue
timestamp_key
Timestamp key
sort_caseid_required
Determine if sort by case ID is required (default: True)
sort_timestamp_along_case_id
Determine if sort by timestamp is required (default: True)
Returns
-------------
freq_triples
Frequency triples from the dataframe
"""
import pandas as pd
if sort_caseid_required:
if sort_timestamp_along_case_id:
df = df.sort_values([case_id_glue, timestamp_key])
else:
df = df.sort_values(case_id_glue)
df_reduced = df[[case_id_glue, activity_key]]
# shift the dataframe by 1
df_reduced_1 = df_reduced.shift(-1)
# shift the dataframe by 2
df_reduced_2 = df_reduced.shift(-2)
# change column names to shifted dataframe
df_reduced_1.columns = [str(col) + "_2" for col in df_reduced_1.columns]
df_reduced_2.columns = [str(col) + "_3" for col in df_reduced_2.columns]
df_successive_rows = pandas_utils.concat(
[df_reduced, df_reduced_1, df_reduced_2], axis=1
)
df_successive_rows = df_successive_rows[
df_successive_rows[case_id_glue]
== df_successive_rows[case_id_glue + "_2"]
]
df_successive_rows = df_successive_rows[
df_successive_rows[case_id_glue]
== df_successive_rows[case_id_glue + "_3"]
]
all_columns = set(df_successive_rows.columns)
all_columns = list(
all_columns
- set([activity_key, activity_key + "_2", activity_key + "_3"])
)
directly_follows_grouping = df_successive_rows.groupby(
[activity_key, activity_key + "_2", activity_key + "_3"]
)
if all_columns:
directly_follows_grouping = directly_follows_grouping[all_columns[0]]
freq_triples = directly_follows_grouping.size().to_dict()
return freq_triples