Source code for pm4py.algo.discovery.dfg.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

from pm4py import util as pmutil
from pm4py.algo.discovery.dfg.variants import (
    native,
    performance,
    freq_triples,
    case_attributes,
    clean,
)
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.util import xes_constants as xes_util
from pm4py.util import exec_utils
from pm4py.util import constants, pandas_utils
from enum import Enum
from typing import Optional, Dict, Any, Union, Tuple
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.algo.discovery.dfg.adapters.pandas import df_statistics
import pandas as pd


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY START_TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
[docs] class Variants(Enum): NATIVE = native FREQUENCY = native PERFORMANCE = performance FREQUENCY_GREEDY = native PERFORMANCE_GREEDY = performance FREQ_TRIPLES = freq_triples CASE_ATTRIBUTES = case_attributes CLEAN = clean # 'novel' replacement for native
DFG_NATIVE = Variants.NATIVE DFG_FREQUENCY = Variants.FREQUENCY DFG_PERFORMANCE = Variants.PERFORMANCE DFG_FREQUENCY_GREEDY = Variants.FREQUENCY_GREEDY DFG_PERFORMANCE_GREEDY = Variants.PERFORMANCE_GREEDY FREQ_TRIPLES = Variants.FREQ_TRIPLES DFG_CLEAN = Variants.CLEAN DEFAULT_VARIANT = Variants.NATIVE VERSIONS = { DFG_NATIVE, DFG_FREQUENCY, DFG_PERFORMANCE, DFG_FREQUENCY_GREEDY, DFG_PERFORMANCE_GREEDY, FREQ_TRIPLES, }
[docs] def apply( log: Union[EventLog, EventStream, pd.DataFrame], parameters: Optional[Dict[Any, Any]] = None, variant=DEFAULT_VARIANT, ) -> Dict[Tuple[str, str], float]: """ Calculates DFG graph (frequency or performance) starting from a log Parameters ---------- log Log parameters Possible parameters passed to the algorithms: Parameters.AGGREGATION_MEASURE -> performance aggregation measure (min, max, mean, median) Parameters.ACTIVITY_KEY -> Attribute to use as activity Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp variant Variant of the algorithm to use, possible values: - Variants.NATIVE - Variants.FREQUENCY - Variants.FREQUENCY_GREEDY - Variants.PERFORMANCE - Variants.PERFORMANCE_GREEDY - Variants.FREQ_TRIPLES Returns ------- dfg DFG graph """ if variant == Variants.CLEAN and pandas_utils.check_is_pandas_dataframe( log ): return clean.apply(log, parameters) elif variant is None: variant = Variants.NATIVE if parameters is None: parameters = {} activity_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_util.DEFAULT_NAME_KEY ) start_timestamp_key = exec_utils.get_param_value( Parameters.START_TIMESTAMP_KEY, parameters, None ) timestamp_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_util.DEFAULT_TIMESTAMP_KEY ) case_id_glue = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, pmutil.constants.CASE_CONCEPT_NAME ) if ( pandas_utils.check_is_pandas_dataframe(log) and not variant == Variants.FREQ_TRIPLES ): dfg_frequency, dfg_performance = df_statistics.get_dfg_graph( log, measure="both", activity_key=activity_key, timestamp_key=timestamp_key, case_id_glue=case_id_glue, start_timestamp_key=start_timestamp_key, ) if variant in [Variants.PERFORMANCE, Variants.PERFORMANCE_GREEDY]: return dfg_performance else: return dfg_frequency return exec_utils.get_variant(variant).apply( log_conversion.apply(log, parameters, log_conversion.TO_EVENT_LOG), parameters=parameters, )