Source code for pm4py.algo.discovery.dfg.variants.clean
'''
PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.
Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import time
from enum import Enum
from typing import Optional, Dict, Any
import numpy as np
import pandas as pd
from pm4py.objects.dfg.obj import DFG
from pm4py.util import constants, exec_utils
from pm4py.util import xes_constants as xes_util
[docs]
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
CONST_AUX_ACT_START = "aux_act_start"
CONST_PROCESS_START = "#!$#PROCESS_START#!$#"
CONST_AUX_ACT_END = "aux_act_end"
CONST_PROCESS_END = "#!$#PROCESS_END#!$#"
[docs]
def apply(
log: pd.DataFrame, parameters: Optional[Dict[str, Any]] = None
) -> DFG:
parameters = {} if parameters is None else parameters
act_key = exec_utils.get_param_value(
Parameters.ACTIVITY_KEY, parameters, xes_util.DEFAULT_NAME_KEY
)
cid_key = exec_utils.get_param_value(
Parameters.CASE_ID_KEY, parameters, constants.CASE_ATTRIBUTE_GLUE
)
time_key = exec_utils.get_param_value(
Parameters.TIMESTAMP_KEY, parameters, xes_util.DEFAULT_TIMESTAMP_KEY
)
df = (
log.sort_values([cid_key, time_key])
.loc[:, [cid_key, act_key]]
.reset_index()
)
aux_act_start = CONST_AUX_ACT_START + str(time.time())
aux_act_end = CONST_AUX_ACT_END + str(time.time())
df[aux_act_start] = (
df.groupby(cid_key)[act_key]
.shift(1)
.replace(np.nan, CONST_PROCESS_START)
)
df[aux_act_end] = (
df.groupby(cid_key)[act_key]
.shift(-1)
.replace(np.nan, CONST_PROCESS_END)
)
starters = df[(df[aux_act_start] == CONST_PROCESS_START)]
borders = df[(df[aux_act_end] == CONST_PROCESS_END)]
connections = df[
(
(df[aux_act_start] != CONST_PROCESS_START)
& (df[aux_act_end] != CONST_PROCESS_END)
)
]
dfg = DFG()
for a, b, f in list(
connections.groupby([act_key, aux_act_end])
.size()
.reset_index()
.itertuples(index=False, name=None)
):
dfg.graph[(a, b)] += f
for a, f in list(
starters.groupby([act_key])
.size()
.reset_index()
.itertuples(index=False, name=None)
):
dfg.start_activities[a] += f
for a, f in list(
borders.groupby([act_key])
.size()
.reset_index()
.itertuples(index=False, name=None)
):
dfg.end_activities[a] += f
return dfg