Source code for pm4py.algo.discovery.dfg.variants.clean_polars

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
import time
from enum import Enum
from typing import Optional, Dict, Any

import polars as pl

from pm4py.objects.dfg.obj import DFG
from pm4py.util import constants, exec_utils
from pm4py.util import xes_constants as xes_util


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
CONST_AUX_ACT = "aux_act_" CONST_AUX_CASE = "aux_case_" CONST_COUNT = "count_"
[docs] def apply( log: pl.DataFrame, parameters: Optional[Dict[str, Any]] = None ) -> DFG: parameters = {} if parameters is None else parameters act_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_util.DEFAULT_NAME_KEY ) cid_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_ATTRIBUTE_GLUE ) time_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_util.DEFAULT_TIMESTAMP_KEY ) aux_act = CONST_AUX_ACT + str(time.time()) aux_case = CONST_AUX_CASE + str(time.time()) df = log[[cid_key, act_key, time_key]].clone() df = df.sort([cid_key, time_key]) df = df[[cid_key, act_key]] df = df.with_column(df[act_key].shift(-1).alias(aux_act)) df = df.with_column(df[cid_key].shift(-1).alias(aux_case)) dfg = DFG() excl_starter = df[0, act_key] borders = df.filter(df[cid_key] != df[aux_case]) for d in filter( lambda d: d[aux_act] is not None, borders.groupby([aux_act]).count().to_dicts(), ): v = d["count"] + 1 if d[aux_act] == excl_starter else d["count"] dfg.start_activities[d[aux_act]] = v for d in filter( lambda d: d[act_key] is not None, borders.groupby([act_key]).count().to_dicts(), ): dfg.end_activities[d[act_key]] = d["count"] for d in ( df.filter((df[cid_key] == df[aux_case])) .groupby([act_key, aux_act]) .count() .to_dicts() ): dfg.graph[(d[act_key], d[aux_act])] = d["count"] return dfg