Source code for pm4py.algo.discovery.dfg.variants.clean_time

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''

import time
from enum import Enum
from typing import List, Optional, Dict, Any

import pandas as pd
import numpy as np
from pandas._libs.tslibs.timestamps import Timestamp
from pandas.core.frame import DataFrame
from pandas.core.tools.datetimes import to_datetime

from pm4py.objects.dfg.obj import DFG
from pm4py.util import constants, exec_utils
from pm4py.util import xes_constants as xes_util


[docs] class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
CONST_AUX_ACT = 'aux_act_' CONST_AUX_CASE = 'aux_case_' CONST_COUNT = 'count_' from pm4py.discovery import discover_dfg_typed
[docs] def apply(log: pd.DataFrame, parameters=None): if parameters is None: parameters = {} act_key = exec_utils.get_param_value( Parameters.ACTIVITY_KEY, parameters, xes_util.DEFAULT_NAME_KEY) cid_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, constants.CASE_ATTRIBUTE_GLUE) time_key = exec_utils.get_param_value( Parameters.TIMESTAMP_KEY, parameters, xes_util.DEFAULT_TIMESTAMP_KEY) '''sort the values according to cid and timekey''' df = log.sort_values([cid_key, time_key]).loc[:, [cid_key, act_key, time_key]].reset_index() '''mapping each case ID to the first time stamp of that case.''' grouped = df.groupby(cid_key) all_cases = df[cid_key].unique() time_dictionary_list = {} for case in all_cases: current_group = grouped.get_group(case) current_group = current_group.sort_values([cid_key, time_key]).loc[:, [cid_key, act_key, time_key]].reset_index() all_act = current_group[act_key].unique() init_timestamp = current_group[time_key][0] '''deal with loops in a case''' for act in all_act: df1 = current_group[current_group[act_key] == act] mean_time = df1[time_key].mean() average_time = mean_time - init_timestamp if act not in time_dictionary_list.keys(): time_dictionary_list[act] = [] time_dictionary_list[act].append(average_time) else: time_dictionary_list[act].append(average_time) keys = time_dictionary_list.keys() time_dictionary = {} for key in keys: avg=pd.to_timedelta(pd.Series(time_dictionary_list[key])).mean() time_dictionary[key] = avg return time_dictionary