Source code for pm4py.algo.discovery.heuristics.algorithm

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum

from pm4py.algo.discovery.heuristics.variants import classic, plusplus
from pm4py.objects.conversion.log import converter as log_conversion
from pm4py.objects.heuristics_net.obj import HeuristicsNet
from pm4py.util import exec_utils, pandas_utils
from typing import Optional, Dict, Any, Union, Tuple
from pm4py.objects.log.obj import EventLog, EventStream
import pandas as pd
from pm4py.objects.petri_net.obj import PetriNet, Marking


[docs] class Variants(Enum): CLASSIC = classic PLUSPLUS = plusplus
CLASSIC = Variants.CLASSIC DEFAULT_VARIANT = CLASSIC VERSIONS = {CLASSIC}
[docs] def apply( log: Union[EventLog, EventStream, pd.DataFrame], parameters: Optional[Dict[Any, Any]] = None, variant=CLASSIC, ) -> Tuple[PetriNet, Marking, Marking]: """ Discovers a Petri net using Heuristics Miner Parameters ------------ log Event log parameters Possible parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY - Parameters.DEPENDENCY_THRESH - Parameters.AND_MEASURE_THRESH - Parameters.MIN_ACT_COUNT - Parameters.MIN_DFG_OCCURRENCES - Parameters.DFG_PRE_CLEANING_NOISE_THRESH - Parameters.LOOP_LENGTH_TWO_THRESH variant Variant of the algorithm: - Variants.CLASSIC - Variants.PLUSPLUS Returns ------------ net Petri net im Initial marking fm Final marking """ if pandas_utils.check_is_pandas_dataframe(log): return exec_utils.get_variant(variant).apply_pandas( log, parameters=parameters ) return exec_utils.get_variant(variant).apply( log_conversion.apply( log, variant=log_conversion.Variants.TO_EVENT_LOG, parameters=parameters, ), parameters=parameters, )
[docs] def apply_dfg( dfg: Dict[Tuple[str, str], int], activities=None, activities_occurrences=None, start_activities=None, end_activities=None, parameters=None, variant=CLASSIC, ) -> Tuple[PetriNet, Marking, Marking]: """ Discovers a Petri net using Heuristics Miner Parameters ------------ dfg Directly-Follows Graph activities (If provided) list of activities of the log activities_occurrences (If provided) dictionary of activities occurrences start_activities (If provided) dictionary of start activities occurrences end_activities (If provided) dictionary of end activities occurrences parameters Possible parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY - Parameters.DEPENDENCY_THRESH - Parameters.AND_MEASURE_THRESH - Parameters.MIN_ACT_COUNT - Parameters.MIN_DFG_OCCURRENCES - Parameters.DFG_PRE_CLEANING_NOISE_THRESH - Parameters.LOOP_LENGTH_TWO_THRESH variant Variant of the algorithm: - Variants.CLASSIC Returns ------------ net Petri net im Initial marking fm Final marking """ return exec_utils.get_variant(variant).apply_dfg( dfg, activities=activities, activities_occurrences=activities_occurrences, start_activities=start_activities, end_activities=end_activities, parameters=parameters, )
[docs] def apply_heu( log: Union[EventLog, EventStream, pd.DataFrame], parameters: Optional[Dict[Any, Any]] = None, variant=CLASSIC, ) -> HeuristicsNet: """ Discovers an Heuristics Net using Heuristics Miner Parameters ------------ log Event log parameters Possible parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY - Parameters.DEPENDENCY_THRESH - Parameters.AND_MEASURE_THRESH - Parameters.MIN_ACT_COUNT - Parameters.MIN_DFG_OCCURRENCES - Parameters.DFG_PRE_CLEANING_NOISE_THRESH - Parameters.LOOP_LENGTH_TWO_THRESH variant Variant of the algorithm: - Variants.CLASSIC Returns ------------ net Petri net im Initial marking fm Final marking """ return exec_utils.get_variant(variant).apply_heu( log_conversion.apply( log, variant=log_conversion.Variants.TO_EVENT_LOG, parameters=parameters, ), parameters=parameters, )
[docs] def apply_heu_dfg( dfg: Dict[Tuple[str, str], int], activities=None, activities_occurrences=None, start_activities=None, end_activities=None, parameters=None, variant=CLASSIC, ) -> HeuristicsNet: """ Discovers an Heuristics Net using Heuristics Miner Parameters ------------ dfg Directly-Follows Graph activities (If provided) list of activities of the log activities_occurrences (If provided) dictionary of activities occurrences start_activities (If provided) dictionary of start activities occurrences end_activities (If provided) dictionary of end activities occurrences parameters Possible parameters of the algorithm, including: - Parameters.ACTIVITY_KEY - Parameters.TIMESTAMP_KEY - Parameters.CASE_ID_KEY - Parameters.DEPENDENCY_THRESH - Parameters.AND_MEASURE_THRESH - Parameters.MIN_ACT_COUNT - Parameters.MIN_DFG_OCCURRENCES - Parameters.DFG_PRE_CLEANING_NOISE_THRESH - Parameters.LOOP_LENGTH_TWO_THRESH variant Variant of the algorithm: - Variants.CLASSIC Returns ------------ net Petri net im Initial marking fm Final marking """ return exec_utils.get_variant(variant).apply_heu_dfg( dfg, activities=activities, activities_occurrences=activities_occurrences, start_activities=start_activities, end_activities=end_activities, parameters=parameters, )